Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Automatic Detection of Mitochondria From Electron Microscope Tomography Images: a Curve Fitting Approach

dc.contributor.author Mumcuoglu, Erkan U.
dc.contributor.author Perkins, Guy
dc.contributor.author Martone, Maryann
dc.contributor.author Tasel, Serdar F.
dc.contributor.author Hassanpour, Reza
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.date.accessioned 2020-06-02T07:01:51Z
dc.date.accessioned 2025-09-18T12:49:33Z
dc.date.available 2020-06-02T07:01:51Z
dc.date.available 2025-09-18T12:49:33Z
dc.date.issued 2014
dc.description Tasel, Serdar/0000-0002-6671-8993; Perkins, Guy/0000-0002-1834-6646 en_US
dc.description.abstract Mitochondria are sub-cellular components which are mainly responsible for synthesis of adenosine tri-phosphate (ATP) and involved in the regulation of several cellular activities such as apoptosis. The relation between some common diseases of aging and morphological structure of mitochondria is gaining strength by an increasing number of studies. Electron microscope tomography (EMT) provides high-resolution images of the 3D structure and internal arrangement of mitochondria. Studies that aim to reveal the correlation between mitochondrial structure and its function require the aid of special software tools for manual segmentation of mitochondria from EMT images. Automated detection and segmentation of mitochondria is a challenging problem due to the variety of mitochondrial structures, the presence of noise, artifacts and other sub-cellular structures. Segmentation methods reported in the literature require human interaction to initialize the algorithms. In our previous study, we focused on 2D detection and segmentation of mitochondria using an ellipse detection method. In this study, we propose a new approach for automatic detection of mitochondria from EMT images. First, a preprocessing step was applied in order to reduce the effect of non-mitochondrial sub-cellular structures. Then, a curve fitting approach was presented using a Hessian-based ridge detector to extract membrane-like structures and a curve-growing scheme Finally, an automatic algorithm was employed to detect mitochondria which are represented by a subset of the detected curves. The results show that the proposed method is more robust in detection of mitochondria in consecutive EMT slices as compared with our previous automatic method. en_US
dc.identifier.citation Tasel, Serdar F.; Hassanpour, Reza; Mumcuoglu, EU.;..et.al., "Automatic detection of mitochondria from electron microscope tomography images: a curve fitting approach" Medical Imaging 2014: Image Processing, Vol.9034, (2014). en_US
dc.identifier.doi 10.1117/12.2043517
dc.identifier.isbn 9780819498274
dc.identifier.issn 0277-786X
dc.identifier.issn 1996-756X
dc.identifier.scopus 2-s2.0-84902108679
dc.identifier.uri https://doi.org/10.1117/12.2043517
dc.identifier.uri https://hdl.handle.net/123456789/12399
dc.language.iso en en_US
dc.publisher Spie-int Soc Optical Engineering en_US
dc.relation.ispartof Conference on Medical Imaging - Image Processing -- FEB 16-18, 2014 -- San Diego, CA en_US
dc.relation.ispartofseries Proceedings of SPIE
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Curve Fitting en_US
dc.subject Electron Microscope Tomography en_US
dc.subject Mitochondrion en_US
dc.subject Detection en_US
dc.subject Active Contour Model en_US
dc.title Automatic Detection of Mitochondria From Electron Microscope Tomography Images: a Curve Fitting Approach en_US
dc.title Automatic detection of mitochondria from electron microscope tomography images: a curve fitting approach tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Tasel, Serdar/0000-0002-6671-8993
gdc.author.id Perkins, Guy/0000-0002-1834-6646
gdc.author.institutional Hassanpour, Reza
gdc.author.institutional Taşel, Faris Serdar
gdc.author.scopusid 55185224400
gdc.author.scopusid 56086374000
gdc.author.scopusid 56198552400
gdc.author.scopusid 7103001732
gdc.author.scopusid 13605852600
gdc.author.wosid Mumcuoglu, Erkan/B-5480-2012
gdc.author.wosid Tasel, Faris/Lcd-9768-2024
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Tasel, Serdar F.; Hassanpour, Reza] Cankaya Univ, Dept Comp Engn, TR-06810 Ankara, Turkey; [Tasel, Serdar F.; Mumcuoglu, Erkan U.] Middle E Tech Univ, Grad Sch Informat, Dept Health Informat, TR-06531 Ankara, Turkey; [Perkins, Guy; Martone, Maryann] Univ Calif San Diego, Natl Ctr Microscopy & Imaging Res, La Jolla, CA 92093 USA en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q4
gdc.description.volume 9034 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W2070962238
gdc.identifier.wos WOS:000338543300147
gdc.openalex.fwci 0.96456618
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 1
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.wos.citedcount 1
relation.isAuthorOfPublication 9d0ac03c-117b-485a-b923-109829e41ba1
relation.isAuthorOfPublication 918b648d-075a-417d-b9d4-d8abd950b0e7
relation.isAuthorOfPublication.latestForDiscovery 9d0ac03c-117b-485a-b923-109829e41ba1
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files