Series Representations for Fractional-Calculus Operators Involving Generalised Mittag-Leffler Functions
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Srivastava, H. M. | |
| dc.contributor.author | Fernandez, Arran | |
| dc.date.accessioned | 2020-02-28T12:18:54Z | |
| dc.date.accessioned | 2025-09-18T12:09:41Z | |
| dc.date.available | 2020-02-28T12:18:54Z | |
| dc.date.available | 2025-09-18T12:09:41Z | |
| dc.date.issued | 2019 | |
| dc.description | Fernandez, Arran/0000-0002-1491-1820; Srivastava, Hari M./0000-0002-9277-8092 | en_US |
| dc.description.abstract | We consider an integral transform introduced by Prabhakar, involving generalised multi-parameter Mittag-Leffler functions, which can be used to introduce and investigate several different models of fractional calculus. We derive a new series expression for this transform, in terms of classical Riemann-Liouville fractional integrals, and use it to obtain or verify series formulae in various specific cases corresponding to different fractional-calculus models. We demonstrate the power of our result by applying the series formula to derive analogues of the product and chain rules in more general fractional contexts. We also discuss how the Prabhakar model can be used to explore the idea of fractional iteration in connection with semigroup properties. (C) 2018 Elsevier B.V. All rights reserved. | en_US |
| dc.identifier.citation | Fernandez, Arran; Baleanu, Dumitru; Srivastava, H. M., "Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions", Communications in Nonlinear Science And Numerical Simulation, Vol. 67, pp. 517-527, (2019). | en_US |
| dc.identifier.doi | 10.1016/j.cnsns.2018.07.035 | |
| dc.identifier.issn | 1007-5704 | |
| dc.identifier.issn | 1878-7274 | |
| dc.identifier.scopus | 2-s2.0-85050850995 | |
| dc.identifier.uri | https://doi.org/10.1016/j.cnsns.2018.07.035 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/11478 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Communications in Nonlinear Science and Numerical Simulation | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | Mittag-Leffler Functions | en_US |
| dc.subject | Prabhakar Operators | en_US |
| dc.subject | Convergent Series | en_US |
| dc.title | Series Representations for Fractional-Calculus Operators Involving Generalised Mittag-Leffler Functions | en_US |
| dc.title | Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Fernandez, Arran/0000-0002-1491-1820 | |
| gdc.author.id | Srivastava, Hari M./0000-0002-9277-8092 | |
| gdc.author.scopusid | 57193722100 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 23152241800 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Fernandez, Arran/E-7134-2019 | |
| gdc.author.wosid | Srivastava, Hari M./N-9532-2013 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C3 | |
| gdc.bip.popularityclass | C3 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Fernandez, Arran] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Srivastava, H. M.] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada; [Srivastava, H. M.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan | en_US |
| gdc.description.endpage | 527 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 517 | en_US |
| gdc.description.volume | 67 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2883208200 | |
| gdc.identifier.wos | WOS:000445020100037 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 96.0 | |
| gdc.oaire.influence | 1.2895677E-8 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Mathematics - Classical Analysis and ODEs | |
| gdc.oaire.keywords | Mathematics - Complex Variables | |
| gdc.oaire.keywords | 26A33, 33E12 | |
| gdc.oaire.keywords | Classical Analysis and ODEs (math.CA) | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Complex Variables (math.CV) | |
| gdc.oaire.keywords | Laplace transform | |
| gdc.oaire.keywords | fractional calculus | |
| gdc.oaire.keywords | Mittag-Leffler functions and generalizations | |
| gdc.oaire.keywords | Prabhakar operators | |
| gdc.oaire.keywords | convergent series | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | Mittag-Leffler functions | |
| gdc.oaire.popularity | 6.912987E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 10.6548263 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 115 | |
| gdc.plumx.crossrefcites | 121 | |
| gdc.plumx.mendeley | 10 | |
| gdc.plumx.scopuscites | 134 | |
| gdc.publishedmonth | 2 | |
| gdc.scopus.citedcount | 134 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 129 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
