Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Series Representations for Fractional-Calculus Operators Involving Generalised Mittag-Leffler Functions

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Srivastava, H. M.
dc.contributor.author Fernandez, Arran
dc.date.accessioned 2020-02-28T12:18:54Z
dc.date.accessioned 2025-09-18T12:09:41Z
dc.date.available 2020-02-28T12:18:54Z
dc.date.available 2025-09-18T12:09:41Z
dc.date.issued 2019
dc.description Fernandez, Arran/0000-0002-1491-1820; Srivastava, Hari M./0000-0002-9277-8092 en_US
dc.description.abstract We consider an integral transform introduced by Prabhakar, involving generalised multi-parameter Mittag-Leffler functions, which can be used to introduce and investigate several different models of fractional calculus. We derive a new series expression for this transform, in terms of classical Riemann-Liouville fractional integrals, and use it to obtain or verify series formulae in various specific cases corresponding to different fractional-calculus models. We demonstrate the power of our result by applying the series formula to derive analogues of the product and chain rules in more general fractional contexts. We also discuss how the Prabhakar model can be used to explore the idea of fractional iteration in connection with semigroup properties. (C) 2018 Elsevier B.V. All rights reserved. en_US
dc.identifier.citation Fernandez, Arran; Baleanu, Dumitru; Srivastava, H. M., "Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions", Communications in Nonlinear Science And Numerical Simulation, Vol. 67, pp. 517-527, (2019). en_US
dc.identifier.doi 10.1016/j.cnsns.2018.07.035
dc.identifier.issn 1007-5704
dc.identifier.issn 1878-7274
dc.identifier.scopus 2-s2.0-85050850995
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2018.07.035
dc.identifier.uri https://hdl.handle.net/20.500.12416/11478
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Communications in Nonlinear Science and Numerical Simulation
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Calculus en_US
dc.subject Mittag-Leffler Functions en_US
dc.subject Prabhakar Operators en_US
dc.subject Convergent Series en_US
dc.title Series Representations for Fractional-Calculus Operators Involving Generalised Mittag-Leffler Functions en_US
dc.title Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Fernandez, Arran/0000-0002-1491-1820
gdc.author.id Srivastava, Hari M./0000-0002-9277-8092
gdc.author.scopusid 57193722100
gdc.author.scopusid 7005872966
gdc.author.scopusid 23152241800
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Fernandez, Arran/E-7134-2019
gdc.author.wosid Srivastava, Hari M./N-9532-2013
gdc.author.yokid 56389
gdc.bip.impulseclass C3
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Fernandez, Arran] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Srivastava, H. M.] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada; [Srivastava, H. M.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.endpage 527 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 517 en_US
gdc.description.volume 67 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2883208200
gdc.identifier.wos WOS:000445020100037
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 96.0
gdc.oaire.influence 1.2895677E-8
gdc.oaire.isgreen true
gdc.oaire.keywords Mathematics - Classical Analysis and ODEs
gdc.oaire.keywords Mathematics - Complex Variables
gdc.oaire.keywords 26A33, 33E12
gdc.oaire.keywords Classical Analysis and ODEs (math.CA)
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Complex Variables (math.CV)
gdc.oaire.keywords Laplace transform
gdc.oaire.keywords fractional calculus
gdc.oaire.keywords Mittag-Leffler functions and generalizations
gdc.oaire.keywords Prabhakar operators
gdc.oaire.keywords convergent series
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords Mittag-Leffler functions
gdc.oaire.popularity 6.912987E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 10.6548263
gdc.openalex.normalizedpercentile 0.99
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 115
gdc.plumx.crossrefcites 121
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 134
gdc.publishedmonth 2
gdc.scopus.citedcount 134
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 129
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files