Approximate Solution of Linear and Nonlinear Fractional Differential Equations Under M-Point Local and Nonlocal Boundary Conditions
| dc.contributor.author | Khan, Rahmat Ali | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Saker, Samir H. | |
| dc.contributor.author | Khalil, Hammad | |
| dc.date.accessioned | 2018-09-26T13:21:32Z | |
| dc.date.accessioned | 2025-09-18T12:08:54Z | |
| dc.date.available | 2018-09-26T13:21:32Z | |
| dc.date.available | 2025-09-18T12:08:54Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | This paper investigates a computational method to find an approximation to the solution of fractional differential equations subject to local and nonlocal m-point boundary conditions. The method that we will employ is a variant of the spectral method which is based on the normalized Bernstein polynomials and its operational matrices. Operational matrices that we will developed in this paper have the ability to convert fractional differential equations together with its nonlocal boundary conditions to a system of easily solvable algebraic equations. Some test problems are presented to illustrate the efficiency, accuracy, and applicability of the proposed method. | en_US |
| dc.identifier.citation | Khalil, H...et al. (2016). Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions. Advance in Difference Equations. http://dx.doi.org/ 10.1186/s13662-016-0910-7 | en_US |
| dc.identifier.doi | 10.1186/s13662-016-0910-7 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-84978058305 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-016-0910-7 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/11254 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springeropen | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Bernstein Polynomials | en_US |
| dc.subject | Operational Matrices | en_US |
| dc.subject | M-Point Boundary Conditions | en_US |
| dc.subject | Fractional Differential Equations | en_US |
| dc.title | Approximate Solution of Linear and Nonlinear Fractional Differential Equations Under M-Point Local and Nonlocal Boundary Conditions | en_US |
| dc.title | Approximate solution of linear and nonlinear fractional differential equations under m-point local and nonlocal boundary conditions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 7004348948 | |
| gdc.author.scopusid | 56076051200 | |
| gdc.author.scopusid | 35226550700 | |
| gdc.author.wosid | Saker, Samir/A-5499-2008 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Khalil, Hammad/E-8625-2018 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Khalil, Hammad] Univ Poonch Rawalakot, Dept Math, Rawalakot 12350, Pakistan; [Khalil, Hammad] Univ Malakand, Dept Math, POB 18000, Dir Lower, Khybarpukhtunkh, Pakistan; [Khan, Rahmat Ali] Univ Malakand, Fac Sci, Dir Lower, Khybarpukhtunkh, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, Ankara, Turkey; [Saker, Samir H.] Mansoura Univ, Dept Math, Al Mansurah, Muhafazat Ad Da, Egypt | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2016 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2468142134 | |
| gdc.identifier.wos | WOS:000391464900001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 5.0 | |
| gdc.oaire.influence | 2.919459E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Convergence Analysis of Iterative Methods for Nonlinear Equations | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Numerical Methods for Singularly Perturbed Problems | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Differential algebraic equation | |
| gdc.oaire.keywords | Spectral method | |
| gdc.oaire.keywords | Nonlinear Equations | |
| gdc.oaire.keywords | Boundary value problem | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Numerical partial differential equations | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Algebra and Number Theory | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Algebraic equation | |
| gdc.oaire.keywords | Fractional ordinary differential equations | |
| gdc.oaire.keywords | Bernstein polynomials | |
| gdc.oaire.keywords | \(m\)-point boundary conditions | |
| gdc.oaire.keywords | fractional differential equations | |
| gdc.oaire.keywords | operational matrices | |
| gdc.oaire.keywords | Nonlocal and multipoint boundary value problems for ordinary differential equations | |
| gdc.oaire.popularity | 9.790949E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.15356933 | |
| gdc.openalex.normalizedpercentile | 0.91 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 6 | |
| gdc.plumx.crossrefcites | 4 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 9 | |
| gdc.publishedmonth | 7 | |
| gdc.scopus.citedcount | 9 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
