Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Multiple Linear Regression Model Under Nonnormality

No Thumbnail Available

Date

2004

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

We consider multiple linear regression models under nonnormality. We derive modified maximum likelihood estimators (MMLEs) of the parameters and show that they are efficient and robust. We show that the least squares esimators are considerably less efficient. We compare the efficiencies of the MMLEs and the M estimators for symmetric distributions and show that, for plausible alternatives to an assumed distribution, the former are more efficient. We provide real-life examples.

Description

Keywords

Multiple Linear Regression, Modified Likelihood, Robustness, Outliers, M Estimators, Least Squares, Nonnormality, Hypothesis Testing

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Islam, M. Q.; Tiku, M. L. (2004). "Multiple linear regression model under nonnormality", Communications in Statistics-Theory and Methods, Vol. 33, No. 10, pp. 2443-2467

WoS Q

Q4

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
48

Source

Volume

33

Issue

10

Start Page

2443

End Page

2467
PlumX Metrics
Citations

CrossRef : 30

Scopus : 64

Captures

Mendeley Readers : 27

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.78033128

Sustainable Development Goals

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo