Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Evaluating Machine Learning Techniques for Fluid Mechanics: Comparative Analysis of Accuracy and Computational Efficiency

dc.contributor.author Koçak, Eyup
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-13T12:35:20Z
dc.date.available 2025-05-13T12:35:20Z
dc.date.issued 2024
dc.description.abstract This study focuses on applying machine learning (ML) techniques to fluid mechanics problems. Various ML techniques were used to create a series of case studies, where their accuracy and computational costs were compared, and behavior patterns in different problem types were analyzed. The goal is to evaluate the effectiveness and efficiency of ML techniques in fluid mechanics and to contribute to the field by comparing them with traditional methods. Case studies were also conducted using Computational Fluid Dynamics (CFD), and the results were compared with those from ML techniques in terms of accuracy and computational cost. For Case 1, after optimizing relevant parameters, the Artificial Neural Network (ANN), Random Forest (RF), and Support Vector Machine (SVM) models all achieved an R² value above 0.9. However, in Case 2, only the ANN method surpassed this threshold, likely due to the limited data available. In Case 3, all models except for Linear Regression (LR) demonstrated predictive abilities above the 0.9 threshold after parameter optimization. The LR method was found to have low applicability to fluid mechanics problems, while SVM and ANN methods proved to be particularly effective tools after grid search optimization. en_US
dc.identifier.doi 10.58559/ijes.1570736
dc.identifier.issn 2717-7513
dc.identifier.uri https://doi.org/10.58559/ijes.1570736
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1288647/evaluating-machine-learning-techniques-for-fluid-mechanics-comparative-analysis-of-accuracy-and-computational-efficiency
dc.identifier.uri https://hdl.handle.net/20.500.12416/9826
dc.language.iso en en_US
dc.relation.ispartof International journal of energy studies (Online) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title Evaluating Machine Learning Techniques for Fluid Mechanics: Comparative Analysis of Accuracy and Computational Efficiency en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Koçak, Eyup
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Çankaya Üni̇versi̇tesi̇ en_US
gdc.description.endpage 721 en_US
gdc.description.issue 4 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 679 en_US
gdc.description.volume 9 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4405700577
gdc.identifier.trdizinid 1288647
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.31
gdc.opencitations.count 0
gdc.plumx.mendeley 1
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication.latestForDiscovery 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files