Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger With Caputo-Liouville Derivative
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Atangana, Abdon | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2019-12-18T10:35:40Z | |
| dc.date.accessioned | 2025-09-18T13:26:41Z | |
| dc.date.available | 2019-12-18T10:35:40Z | |
| dc.date.available | 2025-09-18T13:26:41Z | |
| dc.date.issued | 2017 | |
| dc.description.abstract | Using the new Caputo-Liouville derivative with fractional order, we have modified the nonlinear Schrdinger equation. We have shown some useful in connection of the new derivative with fractional order. We used an iterative approach to derive an approximate solution of the modified equation. We have established the stability of the iteration scheme using the fixed point theorem. We have in addition presented in detail the uniqueness of the special solution. | en_US |
| dc.identifier.citation | Atangana, Abdon; Baleanu, Dumitru (2017). Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative, Filomat, 31(8), 2243-2248. | en_US |
| dc.identifier.doi | 10.2298/FIL1708243A | |
| dc.identifier.issn | 0354-5180 | |
| dc.identifier.uri | https://doi.org/10.2298/FIL1708243A | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12675 | |
| dc.language.iso | en | en_US |
| dc.publisher | Univ Nis, Fac Sci Math | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Caputo-Liouville Derivative With Fractional Order | en_US |
| dc.subject | Nonlinear Schrodinger Equation | en_US |
| dc.subject | Fixed Point Theorem | en_US |
| dc.subject | Uniqueness | en_US |
| dc.title | Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger With Caputo-Liouville Derivative | en_US |
| dc.title | Application of Fixed Point Theorem for Stability Analysis of a Nonlinear Schrodinger with Caputo-Liouville Derivative | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Atangana, Abdon/Aae-4779-2021 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Atangana, Abdon] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa; [Baleanu, Dumitru] Cankara Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest 76900, Romania | en_US |
| gdc.description.endpage | 2248 | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 2243 | en_US |
| gdc.description.volume | 31 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2605951191 | |
| gdc.identifier.wos | WOS:000408375200006 | |
| gdc.openalex.fwci | 3.47508091 | |
| gdc.openalex.normalizedpercentile | 0.93 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 22 | |
| gdc.plumx.crossrefcites | 19 | |
| gdc.plumx.mendeley | 6 | |
| gdc.plumx.scopuscites | 28 | |
| gdc.wos.citedcount | 24 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |