Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of Linked Data Sources Using Semantic Scoring

dc.authorid Kodaz, Halife/0000-0001-8602-4262
dc.authorid Yumusak, Semih/0000-0002-8878-4991
dc.authorid Dogdu, Erdogan/0000-0001-5987-0164
dc.authorscopusid 56814988500
dc.authorscopusid 6603501593
dc.authorscopusid 8945093700
dc.authorwosid Kodaz, Halife/Abg-2951-2020
dc.authorwosid Yumusak, Semih/Y-1134-2019
dc.authorwosid Kodaz, Halife/Q-2141-2015
dc.contributor.author Yumusak, Semih
dc.contributor.author Dogdu, Erdogan
dc.contributor.author Kodaz, Halife
dc.contributor.authorID 142876 tr_TR
dc.contributor.other Bilgisayar Mühendisliği
dc.date.accessioned 2019-12-25T11:40:33Z
dc.date.available 2019-12-25T11:40:33Z
dc.date.issued 2018
dc.department Çankaya University en_US
dc.department-temp [Yumusak, Semih] KTO Karatay Univ, Konya, Turkey; [Dogdu, Erdogan] Cankaya Univ, Comp Engn Dept, Ankara, Turkey; [Kodaz, Halife] Selcuk Univ, Comp Engn Dept, Konya, Turkey en_US
dc.description Kodaz, Halife/0000-0001-8602-4262; Yumusak, Semih/0000-0002-8878-4991; Dogdu, Erdogan/0000-0001-5987-0164 en_US
dc.description.abstract Linked data sets are created using semantic Web technologies and they are usually big and the number of such datasets is growing. The query execution is therefore costly, and knowing the content of data in such datasets should help in targeted querying. Our aim in this paper is to classify linked data sets by their knowledge content. Earlier projects such as LOD Cloud, LODStats, and SPARQLES analyze linked data sources in terms of content, availability and infrastructure. In these projects, linked data sets are classified and tagged principally using VoID vocabulary and analyzed according to their content, availability and infrastructure. Although all linked data sources listed in these projects appear to be classified or tagged, there are a limited number of studies on automated tagging and classification of newly arriving linked data sets. Here, we focus on automated classification of linked data sets using semantic scoring methods. We have collected the SPARQL endpoints of 1,328 unique linked datasets from Datahub, LOD Cloud, LODStats, SPARQLES, and SpEnD projects. We have then queried textual descriptions of resources in these data sets using their rdfs: comment and rdfs: label property values. We analyzed these texts in a similar manner with document analysis techniques by assuming every SPARQL endpoint as a separate document. In this regard, we have used WordNet semantic relations library combined with an adapted term frequency-inverted document frequency (tfidf) analysis on the words and their semantic neighbours. In WordNet database, we have extracted information about comment/label objects in linked data sources by using hypernym, hyponym, homonym, meronym, region, topic and usage semantic relations. We obtained some significant results on hypernym and topic semantic relations; we can find words that identify data sets and this can be used in automatic classification and tagging of linked data sources. By using these words, we experimented different classifiers with different scoring methods, which results in better classification accuracy results. en_US
dc.description.publishedMonth 1
dc.description.sponsorship Scientific and Technological research council of Turkey [1059B141500052, B.14.2. TBT.0.06.01-21514107-020-155998] en_US
dc.description.sponsorship This research is supported by The Scientific and Technological research council of Turkey with grant number 1059B141500052 (Ref. No: B.14.2. TBT.0.06.01-21514107-020-155998). en_US
dc.description.woscitationindex Science Citation Index Expanded - Conference Proceedings Citation Index - Science
dc.identifier.citation Kasnesis, Panagiotis; Tatlas, Nicolaos-Alexandros; Mitilineos, Stelios A.; et al., "Acoustic Sensor Data Flow for Cultural Heritage Monitoring and Safeguarding", Acoustic Sensor Data Flow for Cultural Heritage Monitoring and Safeguarding, Vol. 19, No. 7, pp. 99-107, (2018). en_US
dc.identifier.doi 10.1587/transinf.2017SWP0011
dc.identifier.endpage 107 en_US
dc.identifier.issn 0916-8532
dc.identifier.issn 1745-1361
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85040238135
dc.identifier.scopusquality Q4
dc.identifier.startpage 99 en_US
dc.identifier.uri https://doi.org/10.1587/transinf.2017SWP0011
dc.identifier.volume E101D en_US
dc.identifier.wos WOS:000431760600015
dc.identifier.wosquality Q4
dc.institutionauthor Doğdu, Erdoğan
dc.language.iso en en_US
dc.publisher Ieice-inst Electronics information Communication Engineers en_US
dc.relation.ispartof 15th International Semantic Web Conference (ISWC) -- OCT 17-21, 2016 -- Kobe, JAPAN en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Linked Data en_US
dc.subject Semantic Classification en_US
dc.subject Wordnet en_US
dc.title Classification of Linked Data Sources Using Semantic Scoring tr_TR
dc.title Classification of Linked Data Sources Using Semantic Scoring en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isAuthorOfPublication.latestForDiscovery 0d453674-7998-4d57-a06c-03e13bb1e314
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication.latestForDiscovery 12489df3-847d-4936-8339-f3d38607992f

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Doğdu, Erdoğan.pdf
Size:
5.95 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: