Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of Linked Data Sources Using Semantic Scoring

dc.authoridKodaz, Halife/0000-0001-8602-4262
dc.authoridYumusak, Semih/0000-0002-8878-4991
dc.authoridDogdu, Erdogan/0000-0001-5987-0164
dc.authorscopusid56814988500
dc.authorscopusid6603501593
dc.authorscopusid8945093700
dc.authorwosidKodaz, Halife/Abg-2951-2020
dc.authorwosidYumusak, Semih/Y-1134-2019
dc.authorwosidKodaz, Halife/Q-2141-2015
dc.contributor.authorYumusak, Semih
dc.contributor.authorDoğdu, Erdoğan
dc.contributor.authorDogdu, Erdogan
dc.contributor.authorKodaz, Halife
dc.contributor.authorID142876tr_TR
dc.date.accessioned2019-12-25T11:40:33Z
dc.date.available2019-12-25T11:40:33Z
dc.date.issued2018
dc.departmentÇankaya Universityen_US
dc.department-temp[Yumusak, Semih] KTO Karatay Univ, Konya, Turkey; [Dogdu, Erdogan] Cankaya Univ, Comp Engn Dept, Ankara, Turkey; [Kodaz, Halife] Selcuk Univ, Comp Engn Dept, Konya, Turkeyen_US
dc.descriptionKodaz, Halife/0000-0001-8602-4262; Yumusak, Semih/0000-0002-8878-4991; Dogdu, Erdogan/0000-0001-5987-0164en_US
dc.description.abstractLinked data sets are created using semantic Web technologies and they are usually big and the number of such datasets is growing. The query execution is therefore costly, and knowing the content of data in such datasets should help in targeted querying. Our aim in this paper is to classify linked data sets by their knowledge content. Earlier projects such as LOD Cloud, LODStats, and SPARQLES analyze linked data sources in terms of content, availability and infrastructure. In these projects, linked data sets are classified and tagged principally using VoID vocabulary and analyzed according to their content, availability and infrastructure. Although all linked data sources listed in these projects appear to be classified or tagged, there are a limited number of studies on automated tagging and classification of newly arriving linked data sets. Here, we focus on automated classification of linked data sets using semantic scoring methods. We have collected the SPARQL endpoints of 1,328 unique linked datasets from Datahub, LOD Cloud, LODStats, SPARQLES, and SpEnD projects. We have then queried textual descriptions of resources in these data sets using their rdfs: comment and rdfs: label property values. We analyzed these texts in a similar manner with document analysis techniques by assuming every SPARQL endpoint as a separate document. In this regard, we have used WordNet semantic relations library combined with an adapted term frequency-inverted document frequency (tfidf) analysis on the words and their semantic neighbours. In WordNet database, we have extracted information about comment/label objects in linked data sources by using hypernym, hyponym, homonym, meronym, region, topic and usage semantic relations. We obtained some significant results on hypernym and topic semantic relations; we can find words that identify data sets and this can be used in automatic classification and tagging of linked data sources. By using these words, we experimented different classifiers with different scoring methods, which results in better classification accuracy results.en_US
dc.description.publishedMonth1
dc.description.sponsorshipScientific and Technological research council of Turkey [1059B141500052, B.14.2. TBT.0.06.01-21514107-020-155998]en_US
dc.description.sponsorshipThis research is supported by The Scientific and Technological research council of Turkey with grant number 1059B141500052 (Ref. No: B.14.2. TBT.0.06.01-21514107-020-155998).en_US
dc.description.woscitationindexScience Citation Index Expanded - Conference Proceedings Citation Index - Science
dc.identifier.citationKasnesis, Panagiotis; Tatlas, Nicolaos-Alexandros; Mitilineos, Stelios A.; et al., "Acoustic Sensor Data Flow for Cultural Heritage Monitoring and Safeguarding", Acoustic Sensor Data Flow for Cultural Heritage Monitoring and Safeguarding, Vol. 19, No. 7, pp. 99-107, (2018).en_US
dc.identifier.doi10.1587/transinf.2017SWP0011
dc.identifier.endpage107en_US
dc.identifier.issn0916-8532
dc.identifier.issn1745-1361
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85040238135
dc.identifier.scopusqualityQ4
dc.identifier.startpage99en_US
dc.identifier.urihttps://doi.org/10.1587/transinf.2017SWP0011
dc.identifier.volumeE101Den_US
dc.identifier.wosWOS:000431760600015
dc.identifier.wosqualityQ4
dc.language.isoenen_US
dc.publisherIeice-inst Electronics information Communication Engineersen_US
dc.relation.ispartof15th International Semantic Web Conference (ISWC) -- OCT 17-21, 2016 -- Kobe, JAPANen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLinked Dataen_US
dc.subjectSemantic Classificationen_US
dc.subjectWordneten_US
dc.titleClassification of Linked Data Sources Using Semantic Scoringtr_TR
dc.titleClassification of Linked Data Sources Using Semantic Scoringen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication0d453674-7998-4d57-a06c-03e13bb1e314
relation.isAuthorOfPublication.latestForDiscovery0d453674-7998-4d57-a06c-03e13bb1e314

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Doğdu, Erdoğan.pdf
Size:
5.95 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: