Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Numerical Solutions of Fractional Parabolic Equations With Generalized Mittag-Leffler Kernels

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Saad, Khaled M.
dc.contributor.author Al-Mdallal, Qasem M.
dc.contributor.author Alomari, Abedel-Karrem
dc.contributor.author Abdeljawad, Thabet
dc.date.accessioned 2022-08-29T11:51:10Z
dc.date.accessioned 2025-09-18T14:08:52Z
dc.date.available 2022-08-29T11:51:10Z
dc.date.available 2025-09-18T14:08:52Z
dc.date.issued 2024
dc.description Khaled/0000-0001-6381-6806 en_US
dc.description.abstract In this article, we investigate the generalized fractional operator Caputo type (ABC) with kernels of Mittag-Lefller in three parameters E alpha,mu gamma(lambda t) and its fractional integrals with arbitrary order for solving the time fractional parabolic nonlinear equation. The generalized definition generates infinitely many problems for a fixed fractional derivative alpha. We utilize this operator with homotopy analysis method for constructing the new scheme for generating successive approximations. This procedure is used successfully on two examples for finding the solutions. The effectiveness and accuracy are verified by clarifying the convergence region in the PLANCK CONSTANT OVER TWO PI-curves as well as by calculating the residual error and the results were accurate. Based on the experiment, we verify the existence of the solution for the new parameters. Depending on these results, this treatment can be used to find approximate solutions to many fractional differential equations. en_US
dc.identifier.citation Alomari, Abedel-Karrem...et al. (2020). "Numerical solutions of fractional parabolic equations with generalized Mittag–Leffler kernels", Numerical Methods for Partial Differential Equations. en_US
dc.identifier.doi 10.1002/num.22699
dc.identifier.issn 0749-159X
dc.identifier.issn 1098-2426
dc.identifier.scopus 2-s2.0-85097413975
dc.identifier.uri https://doi.org/10.1002/num.22699
dc.identifier.uri https://hdl.handle.net/20.500.12416/13232
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Numerical Methods for Partial Differential Equations
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Homotopy Analysis Method en_US
dc.subject Mittag&#8211 en_US
dc.subject Lefller Kernel en_US
dc.subject Time Fractional Parabolic Nonlinear Equation en_US
dc.title Numerical Solutions of Fractional Parabolic Equations With Generalized Mittag-Leffler Kernels en_US
dc.title Numerical solutions of fractional parabolic equations with generalized Mittag–Leffler kernels tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id , Khaled/0000-0001-6381-6806
gdc.author.scopusid 57205221485
gdc.author.scopusid 6508051762
gdc.author.scopusid 7005872966
gdc.author.scopusid 36840571200
gdc.author.scopusid 6504742215
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Abdeljawad, Thabet/T-8298-2018
gdc.author.wosid Alomari, A.K./L-3630-2019
gdc.author.wosid Saad, Khaled/Aap-9543-2020
gdc.author.wosid Al-Mdallal, Qasem/Abe-5996-2020
gdc.author.yokid 56389
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Alomari, Abedel-Karrem] Yarmouk Univ, Fac Sci, Dept Math, Irbid, Jordan; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung, Taiwan; [Abdeljawad, Thabet] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Saad, Khaled M.] Najran Univ, Coll Arts & Sci, Dept Math, Najran, Saudi Arabia; [Saad, Khaled M.] Taiz Univ, Fac Sci Appl, Dept Math, Taizi, Yemen; [Al-Mdallal, Qasem M.] United Arab Emirates Univ, Dept Math Sci, Abu Dhabi, U Arab Emirates en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 40 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3110653994
gdc.identifier.wos WOS:000597846800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.158845E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Mittag-Leffler kernel
gdc.oaire.keywords homotopy analysis method
gdc.oaire.keywords time-fractional parabolic nonlinear equation
gdc.oaire.keywords Nonlinear parabolic equations
gdc.oaire.keywords Initial value problems for second-order parabolic equations
gdc.oaire.keywords Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.keywords Mittag-Leffler functions and generalizations
gdc.oaire.popularity 1.2214343E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.21358577
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 12
gdc.plumx.crossrefcites 4
gdc.plumx.facebookshareslikecount 1
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 16
gdc.scopus.citedcount 16
gdc.virtual.author Baleanu, Dumitru
gdc.virtual.author Abdeljawad, Thabet
gdc.wos.citedcount 21
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication ab09a09b-0017-4ffe-a8fe-b9b0499b2c01
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files