Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Analysis of Neurooncological Data To Predict Success of Operation Through Classification

dc.contributor.author Tokdemir, Gul
dc.contributor.author Cagiltay, Nergiz
dc.contributor.author Maras, H. Hakan
dc.contributor.author Bagherzadi, Negin
dc.contributor.author Borcek, Alp Ozgun
dc.contributor.authorID 17411 tr_TR
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06.01. Bilgisayar Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-04-03T08:32:06Z
dc.date.accessioned 2025-09-18T13:27:19Z
dc.date.available 2020-04-03T08:32:06Z
dc.date.available 2025-09-18T13:27:19Z
dc.date.issued 2016
dc.description Maras, Hadi Hakan/0000-0001-5117-3938; Borcek, Alp Ozgun/0000-0002-6222-382X; Cagiltay, Nergiz Ercil/0000-0003-0875-9276 en_US
dc.description.abstract Data mining algorithms have been applied in various fields of medicine to get insights about diagnosis and treatment of certain diseases. This gives rise to more research on personalized medicine as patient data can be utilized to predict outcomes of certain treatment procedures. Accordingly, this study aims to create a model to provide decision support for surgeons in Neurooncology surgery. For this purpose, we have analyzed clinical pathology records of Neurooncology patients through various classification algorithms, namely Support Vector Machine, Multi Perceptron and Naive Bayes methods, and compared their performances with the aim of predicting surgery complication. A large number of factors have been considered to classify and predict percentage of patient's complication in surgery. Some of the factors found to be predictive were age, sex, clinical presentation, previous surgery type etc. For classification models built up using Support Vector Machine, Naive Bayes and Multi Perceptron, Classification trials for Support Vector Machine have shown %77.47 generalization accuracy, which was established by 5-fold cross-validation. en_US
dc.description.sponsorship National Science Association-TUBITAK (CAN project Tubitak 1003) [113S094]; TUBITAK 1003 program en_US
dc.description.sponsorship This study is conducted in the frame of CAN-Neuronavigation system Development Project supported by National Science Association-TUBITAK (CAN project Tubitak 1003 support, Project No: 113S094). The authors would like to thank the support of TUBITAK 1003 program for realizing this research. en_US
dc.identifier.citation Bagherzadi, Negin...et al., "7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB)", pp. 485-486, (2016). en_US
dc.identifier.doi 10.1145/2975167.2985645
dc.identifier.isbn 9781450342254
dc.identifier.scopus 2-s2.0-85009724166
dc.identifier.uri https://doi.org/10.1145/2975167.2985645
dc.identifier.uri https://hdl.handle.net/123456789/12892
dc.language.iso en en_US
dc.publisher Assoc Computing Machinery en_US
dc.relation.ispartof 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB) -- OCT 02-05, 2016 -- Seattle, WA en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Data Mining en_US
dc.subject Support Vector Machine en_US
dc.subject Naive Bayes en_US
dc.subject Multi Perceptron en_US
dc.subject Classifier en_US
dc.subject Neuroocology en_US
dc.title Analysis of Neurooncological Data To Predict Success of Operation Through Classification en_US
dc.title Analysis of Neurooncological Data to Predict Success of operation Through Classification tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Maras, Hadi Hakan/0000-0001-5117-3938
gdc.author.id Borcek, Alp Ozgun/0000-0002-6222-382X
gdc.author.id Cagiltay, Nergiz Ercil/0000-0003-0875-9276
gdc.author.institutional Tokdemir, Gül
gdc.author.institutional Çağıltay, Nergiz
gdc.author.institutional Maraş, Hadi Hakan
gdc.author.scopusid 57192990689
gdc.author.scopusid 8895480900
gdc.author.scopusid 24333488200
gdc.author.scopusid 16237826800
gdc.author.scopusid 56875440000
gdc.author.wosid Cagiltay, Nergiz/O-3082-2019
gdc.author.wosid Maras, Hadi Hakan/G-1236-2017
gdc.author.wosid Borcek, Alp Ozgun/O-6840-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Bagherzadi, Negin] Middle East Tech Univ, Dept Neurosci & Neurotechnol, Ankara, Turkey; [Borcek, Alp Ozgun] Gazi Univ, Fac Med, Dept Neurosurg, Ankara, Turkey; [Tokdemir, Gul; Maras, H. Hakan] Cankaya Univ, Comp Engn Dept, Ankara, Turkey; [Cagiltay, Nergiz] Atilim Univ, Software Engn Dept, Ankara, Turkey en_US
gdc.description.endpage 486 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 485 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W2557609017
gdc.identifier.wos WOS:000433385100061
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.18
gdc.opencitations.count 0
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isAuthorOfPublication 0fe960a2-8415-456a-bc2b-5423aa41f19c
relation.isAuthorOfPublication 8c98bd6c-e698-4f0e-8c8b-ab2fb09ee9ab
relation.isAuthorOfPublication.latestForDiscovery a10f79e3-acee-4bb2-82f2-548c5fb0d165
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 12489df3-847d-4936-8339-f3d38607992f
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files