Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey

Loading...
Thumbnail Image

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Bilgisayar Mühendisliği
Bölümümüzün temel amacı iş yaşamındaki kapsamlı problemlere profesyonel sorumluluk ve etik bilinciyle, bireysel ve takım içinde, teknolojik değişimlere hızla uyum sağlayarak çözüm geliştirebilen ve uygulayabilen, bilgisayar bilimleri ve mühendisliği alanında akademik ve ileri düzey araştırma ve geliştirme yapabilen, yenilikçi ve girişimci bir vizyonla ulusal ve uluslararası düzeyde yeni teknolojilerin geliştirilmesine ve mevcutların iyileştirilmesine katkı verebilen, mesleklerinde saygı duyulan mezunlar yetiştirmeyi hedeflemektedir.

Journal Issue

Events

Abstract

Internet of Things (IoT) has been growing rapidly due to recent advancements in communications and sensor technologies. Meanwhile, with this revolutionary transformation, researchers, implementers, deployers, and users are faced with many challenges. IoT is a complicated, crowded, and complex field; there are various types of devices, protocols, communication channels, architectures, middleware, and more. Standardization efforts are plenty, and this chaos will continue for quite some time. What is clear, on the other hand, is that IoT deployments are increasing with accelerating speed, and this trend will not stop in the near future. As the field grows in numbers and heterogeneity, "intelligence" becomes a focal point in IoT. Since data now becomes "big data," understanding, learning, and reasoning with big data is paramount for the future success of IoT. One of the major problems in the path to intelligent IoT is understanding "context," or making sense of the environment, situation, or status using data from sensors, and then acting accordingly in autonomous ways. This is called "context-aware computing," and it now requires both sensing and, increasingly, learning, as IoT systems get more data and better learning from this big data. In this survey, we review the field, first, from a historical perspective, covering ubiquitous and pervasive computing, ambient intelligence, and wireless sensor networks, and then, move to context-aware computing studies. Finally, we review learning and big data studies related to IoT. We also identify the open issues and provide an insight for future study areas for IoT researchers.

Description

Ozbayoglu, Murat/0000-0001-7998-5735; Dogdu, Erdogan/0000-0001-5987-0164

Keywords

Big Data In Internet Of Things (Iot), Context Awareness, Data Management And Analytics, Machine Learning In Iot

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Sezer, O.B.; Dogdu, E.; Ozbayoglu, A.M., "Context-Aware Computing, Learning, and Big Data in Internet of Things: A Survey", IEEE Internet of Things Journal, Vol. 5, No. 1, pp. 1-27, (2018).

WoS Q

Q1

Scopus Q

Q1

Source

Volume

5

Issue

1

Start Page

1

End Page

27