Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Bennett-Leindler Nabla Type Inequalities Via Conformable Fractional Derivatives on Time Scales

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Amer inst Mathematical Sciences-aims

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

In this work, we prove several new (gamma, a)-nabla Bennett and Leindler dynamic inequalities on time scales. The results proved here generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using integration by parts, chain rule and Holder inequality for the (gamma, a)-nabla-fractional derivative on time scales.

Description

Eldeeb, Ahmed/0000-0003-2822-4092

Keywords

Steffensen'S Inequality, Dynamic Inequality, Dynamic Integral, Time Scales

Turkish CoHE Thesis Center URL

Fields of Science

Citation

El-Deeb, Ahmed A.;...et.al. (2022). "Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales", AIMS Mathematics, Vol.7, No.8, pp.14099-14116.

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Volume

7

Issue

8

Start Page

14099

End Page

14116
PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 1

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo