Asymptotic Integration of (1+α)-Order Fractional Differential Equations
| dc.contributor.author | Mustafa, Octavian G. | |
| dc.contributor.author | Agarwal, Ravi P. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-03-22T11:44:22Z | |
| dc.date.accessioned | 2025-09-18T15:44:55Z | |
| dc.date.available | 2022-03-22T11:44:22Z | |
| dc.date.available | 2025-09-18T15:44:55Z | |
| dc.date.issued | 2011 | |
| dc.description.abstract | We establish the long-time asymptotic formula of solutions to the (1 + alpha)-order fractional differential equation (i)(0)O(t)(1+alpha)x + a (t)x = 0, t > 0, under some simple restrictions on the functional coefficient a(t), where (i)(0)O(t)(1+alpha)x is one of the fractional differential operators D-0(t)alpha(x'), ((0)D(t)(alpha)x)' = D-0(t)1+alpha x and D-0(t)alpha(tx' - x). Here, D-0(t)alpha designates the Riemann-Liouville derivative of order a E (0, 1). The asymptotic formula reads as [b + O(1)] . x(small) + c . x(large) as t -> +infinity for given b, c E is an element of R, where x(small) and x(large) represent the eventually small and eventually large solutions that generate the solution space of the fractional differential equation (i)(0)O(t)(1+alpha)x = 0, t > 0. (C) 2011 Elsevier Ltd. All rights reserved. | en_US |
| dc.description.publishedMonth | 8 | |
| dc.identifier.citation | Baleanu, Dumitru; Mustafa, Octavian G.; Agarwal, Ravi P. (2011). "Asymptotic integration of (1+alpha)-order fractional differential equations", Computers & Mathematics With Applications, Vol. 62, no. 3, pp. 1492-1500. | en_US |
| dc.identifier.doi | 10.1016/j.camwa.2011.03.021 | |
| dc.identifier.issn | 0898-1221 | |
| dc.identifier.scopus | 2-s2.0-79960983918 | |
| dc.identifier.uri | https://doi.org/10.1016/j.camwa.2011.03.021 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14450 | |
| dc.language.iso | en | en_US |
| dc.publisher | Pergamon-elsevier Science Ltd | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Linear Fractional Differential Equation | en_US |
| dc.subject | Asymptotic Integration | en_US |
| dc.title | Asymptotic Integration of (1+α)-Order Fractional Differential Equations | en_US |
| dc.title | Asymptotic integration of (1+alpha)-order fractional differential equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Mustafa, Genghiz Octavian | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 58637379800 | |
| gdc.author.scopusid | 7004046718 | |
| gdc.author.scopusid | 36013313700 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Agarwal, Ravi/Aeq-9823-2022 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Balgat Ankara, Turkey; [Mustafa, Octavian G.] Univ Craiova, DAL, Dept Math & Comp Sci, Craiova 200534, Romania; [Agarwal, Ravi P.] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA | en_US |
| gdc.description.endpage | 1500 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1492 | en_US |
| gdc.description.volume | 62 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W1801214573 | |
| gdc.identifier.wos | WOS:000294083500065 | |
| gdc.openalex.fwci | 5.98824427 | |
| gdc.openalex.normalizedpercentile | 0.96 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 26 | |
| gdc.plumx.crossrefcites | 25 | |
| gdc.plumx.mendeley | 11 | |
| gdc.plumx.scopuscites | 30 | |
| gdc.scopus.citedcount | 30 | |
| gdc.wos.citedcount | 28 | |
| relation.isAuthorOfPublication | 666ca8b3-5f8e-4f44-804e-8ad944bc2938 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | 666ca8b3-5f8e-4f44-804e-8ad944bc2938 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |