On Bernstein Polynomials Method To the System of Abel Integral Equations
| dc.contributor.author | Nia, S. Measoomy | |
| dc.contributor.author | Golmankhaneh, Alireza K. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Jafarian, A. | |
| dc.date.accessioned | 2020-04-29T22:47:40Z | |
| dc.date.accessioned | 2025-09-18T13:27:20Z | |
| dc.date.available | 2020-04-29T22:47:40Z | |
| dc.date.available | 2025-09-18T13:27:20Z | |
| dc.date.issued | 2014 | |
| dc.description | Alireza/0000-0002-3490-7976; Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | en_US |
| dc.description.abstract | This paper deals with a new implementation of the Bernstein polynomials method to the numerical solution of a special kind of singular system. For this aim, first the truncated Bernstein series polynomials of the solution functions are substituted in the given problem. Using some properties of these polynomials, the solution of the problem is reduced to solve a linear system of algebraic equations. In order to confirm the reliability and accuracy of the proposed method, some weakly Abel integral equations systems with comparisons are solved in detail as numerical examples. | en_US |
| dc.identifier.doi | 10.1155/2014/796286 | |
| dc.identifier.issn | 1085-3375 | |
| dc.identifier.issn | 1687-0409 | |
| dc.identifier.scopus | 2-s2.0-84901771523 | |
| dc.identifier.uri | https://doi.org/10.1155/2014/796286 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/12900 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.relation.ispartof | Abstract and Applied Analysis | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | On Bernstein Polynomials Method To the System of Abel Integral Equations | en_US |
| dc.title | On Bernstein Polynomials Method to the System of Abel Integral Equations | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | , Alireza/0000-0002-3490-7976 | |
| gdc.author.id | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | |
| gdc.author.scopusid | 25031262700 | |
| gdc.author.scopusid | 54950124800 | |
| gdc.author.scopusid | 25122552100 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Jafarian, A.; Nia, S. Measoomy] Islamic Azad Univ, Dept Math, Urmia Branch, Orumiyeh, Iran; [Golmankhaneh, Alireza K.] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh, Iran; [Baleanu, D.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia; [Baleanu, D.] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele 76900, Romania | en_US |
| gdc.description.endpage | 7 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 2014 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.openalex | W2079343237 | |
| gdc.identifier.wos | WOS:000336152100001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.9323177E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Orthogonal polynomials | |
| gdc.oaire.keywords | Economics | |
| gdc.oaire.keywords | Matrix Valued Polynomials | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Orthogonal Polynomials | |
| gdc.oaire.keywords | Convergence Analysis of Iterative Methods for Nonlinear Equations | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Series (stratigraphy) | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Order (exchange) | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Algebra over a field | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Classical orthogonal polynomials | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Paleontology | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Bernstein polynomial | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Finance | |
| gdc.oaire.keywords | Algebraic equation | |
| gdc.oaire.keywords | Numerical methods for integral equations | |
| gdc.oaire.keywords | Approximation by polynomials | |
| gdc.oaire.keywords | Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) | |
| gdc.oaire.popularity | 5.5468345E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.25850728 | |
| gdc.openalex.normalizedpercentile | 0.59 | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 9 | |
| gdc.scopus.citedcount | 10 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 9 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
