Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hierarchical SNR Scalable Video Coding with Adaptive Quantization for Reduced Drift Error

dc.contributor.authorChoupani, Roya
dc.contributor.authorWong, Stephan
dc.contributor.authorTolun, Mehmet
dc.date.accessioned2024-01-26T08:31:17Z
dc.date.available2024-01-26T08:31:17Z
dc.date.issued2015
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn video coding, dependencies between frames are being exploited to achieve compression by only coding the differences. This dependency can potentially lead to decoding inaccuracies when there is a communication error, or a deliberate quality reduction due to reduced network or receiver capabilities. The dependency can start at the reference frame and progress through a chain of dependent frames within a group of pictures (GOP) resulting in the so-called drift error. Scalable video coding schemes should deal with such drift errors while maximizing the delivered video quality. In this paper, we present a multi-layer hierarchical structure for scalable video coding capable of reducing the drift error. Moreover, we propose an optimization to adaptively determine the quantization step size for the base and enhancement layers. In addition, we address the trade-off between the drift error and the coding efficiency. The improvements in terms of average PSNR values when one frame in a GOP is lost are 3.70(dB) when only the base layer is delivered, and 4.78(dB) when both the base and the enhancement layers are delivered. The improvements in presence of burst errors are 3.52(dB) when only the base layer is delivered, and 4.50(dB) when both base and enhancement layers are delivered.en_US
dc.identifier.citationChoupani, Roya; Wong, Stephan; Tolun, Mehmet. "Hierarchical SNR Scalable Video Coding with Adaptive Quantization for Reduced Drift Error",10th International Conference on Computer Vision Theory and Applications (VISAPP-2015), pp.117-123, 2015.en_US
dc.identifier.doi10.5220/0005306001170123
dc.identifier.endpage123en_US
dc.identifier.isbn9789897580895
dc.identifier.startpage117en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/7018
dc.language.isoenen_US
dc.relation.ispartofInternational Conference on Computer Vision Theory and Applications - (VISAPP2015)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectScalable Video Codingen_US
dc.subjectRate Distortion Optimizationen_US
dc.subjectDrift Erroren_US
dc.titleHierarchical SNR Scalable Video Coding with Adaptive Quantization for Reduced Drift Errortr_TR
dc.titleHierarchical Snr Scalable Video Coding With Adaptive Quantization for Reduced Drift Erroren_US
dc.typeBook Parten_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Book Chapter.pdf
Size:
183.67 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: