Nonlinear Wave Train in an Inhomogeneous Medium With the Fractional Theory in a Plane Self-Focusing
| dc.contributor.author | Faridi, Waqas Ali | |
| dc.contributor.author | Jhangeer, Adil | |
| dc.contributor.author | Aleem, Maryam | |
| dc.contributor.author | Yusuf, Abdullahi | |
| dc.contributor.author | Alshomrani, Ali S. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Asjad, Muhammad Imran | |
| dc.date.accessioned | 2024-04-25T07:44:55Z | |
| dc.date.accessioned | 2025-09-18T15:43:48Z | |
| dc.date.available | 2024-04-25T07:44:55Z | |
| dc.date.available | 2025-09-18T15:43:48Z | |
| dc.date.issued | 2022 | |
| dc.description | Asjad, Muhammad Imran/0000-0002-1484-5114; Jhangeer, Adil/0000-0001-6747-425X; Ali Faridi, Waqas/0000-0003-0713-5365 | en_US |
| dc.description.abstract | The aim of study is to investigate the Hirota equation which has a significant role in applied sciences, like maritime, coastal engineering, ocean, and the main source of the environmental action due to energy transportation on floating anatomical structures. The classical Hirota model has transformed into a fractional Hirota governing equation by using the space-time fractional Riemann-Liouville, time fractional Atangana-Baleanu and space-time fractional beta differential operators. The most generalized new extended direct algebraic technique is applied to obtain the solitonic patterns. The utilized scheme provided a generalized class of analytical solutions, which is presented by the trigonometric, rational, exponential and hyperbolic functions. The analytical solutions which cover almost all types of soliton are obtained with Riemann-Liouville, Atangana-Baleanu and beta fractional operator. The influence of the fractional-order parameter on the acquired solitary wave solutions is graphically studied. The two and three-dimensional graphical comparison between Riemann-Liouville, Atangana-Baleanu and beta-fractional derivatives for the solutions of the Hirota equation is displayed by considering suitable involved parametric values with the aid of Mathematica. | en_US |
| dc.description.sponsorship | University of Management and Technology Lahore, Pakistan | en_US |
| dc.description.sponsorship | The authors are greatly thankful to the University of Management and Technology Lahore, Pakistan for facilitating and supporting that research work. | en_US |
| dc.identifier.citation | Asjad, Muhammad Imran;...et.al. (2022). "Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing", AIMS Mathematics, Vol.7, No.5, pp.8290-8313. | en_US |
| dc.identifier.doi | 10.3934/math.2022462 | |
| dc.identifier.issn | 2473-6988 | |
| dc.identifier.scopus | 2-s2.0-85126898880 | |
| dc.identifier.uri | https://doi.org/10.3934/math.2022462 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14049 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
| dc.relation.ispartof | AIMS Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Multi-Wave Non-Linear Hirota Equation | en_US |
| dc.subject | Fractional Derivatives | en_US |
| dc.subject | Travelling Wave Transformation | en_US |
| dc.subject | New Extended Direct Algebraic Method | en_US |
| dc.subject | Soliton Solutions | en_US |
| dc.title | Nonlinear Wave Train in an Inhomogeneous Medium With the Fractional Theory in a Plane Self-Focusing | en_US |
| dc.title | Nonlinear wave train in an inhomogeneous medium with the fractional theory in a plane self-focusing | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Asjad, Muhammad Imran/0000-0002-1484-5114 | |
| gdc.author.id | Jhangeer, Adil/0000-0001-6747-425X | |
| gdc.author.id | Ali Faridi, Waqas/0000-0003-0713-5365 | |
| gdc.author.scopusid | 57198098059 | |
| gdc.author.scopusid | 57225192008 | |
| gdc.author.scopusid | 36668817200 | |
| gdc.author.scopusid | 57192437392 | |
| gdc.author.scopusid | 57193690600 | |
| gdc.author.scopusid | 56901415600 | |
| gdc.author.wosid | Faridi, Waqas Ali Faridi/Ago-2432-2022 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Yusuf, Abdullahi/Aar-4510-2021 | |
| gdc.author.wosid | Alshomrani, Ali/Q-4236-2017 | |
| gdc.author.wosid | Asjad, Muhammad/X-1799-2019 | |
| gdc.author.wosid | Jhangeer, Adil/G-4301-2018 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Asjad, Muhammad Imran; Faridi, Waqas Ali; Aleem, Maryam] Univ Management & Thchnol, Dept Math, Lahore, Pakistan; [Jhangeer, Adil] Namal Inst, Dept Math, Talagang Rd, Mianwali 42250, Pakistan; [Yusuf, Abdullahi] Biruni Univ, Dept Comp Engn, Istanbul, Turkey; [Yusuf, Abdullahi] Near East Univ TRNC, Dept Math, Mersin 10, Nicosia, Turkey; [Alshomrani, Ali S.] King Abdulaziz Univ, Dept Math, Jeddah, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung, Taiwan | en_US |
| gdc.description.endpage | 8313 | en_US |
| gdc.description.issue | 5 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 8290 | en_US |
| gdc.description.volume | 7 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4214732477 | |
| gdc.identifier.wos | WOS:000762976400002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 2.6881426E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Travelling Wave Transformation | |
| gdc.oaire.keywords | fractional derivatives | |
| gdc.oaire.keywords | Operator (biology) | |
| gdc.oaire.keywords | travelling wave transformation | |
| gdc.oaire.keywords | new extended direct algebraic method | |
| gdc.oaire.keywords | Space (punctuation) | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Biochemistry | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | multi-wave non-linear hirota equation | |
| gdc.oaire.keywords | Discrete Solitons in Nonlinear Photonic Systems | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | New Extended Direct Algebraic Method | |
| gdc.oaire.keywords | Time-Fractional Diffusion Equation | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Exponential function | |
| gdc.oaire.keywords | Multi-Wave Non-Linear Hirota Equation | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Rational function | |
| gdc.oaire.keywords | Statistical and Nonlinear Physics | |
| gdc.oaire.keywords | Linguistics | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | FOS: Philosophy, ethics and religion | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | soliton solutions | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Philosophy | |
| gdc.oaire.keywords | Physics and Astronomy | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Mathematical physics | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | FOS: Languages and literature | |
| gdc.oaire.keywords | Repressor | |
| gdc.oaire.keywords | Soliton Solutions | |
| gdc.oaire.keywords | Transcription factor | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Rogue Waves in Nonlinear Systems | |
| gdc.oaire.popularity | 5.3804494E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.05124528 | |
| gdc.openalex.normalizedpercentile | 0.59 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 4 | |
| gdc.scopus.citedcount | 4 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
