Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Finite-Time Stabilization of a Perturbed Chaotic Finance Model

dc.contributor.author Ouannas, Adel
dc.contributor.author Shafiq, Muhammad
dc.contributor.author Pham, Viet-Thanh
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ahmad, Israr
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-04-27T13:35:26Z
dc.date.accessioned 2025-09-18T13:26:57Z
dc.date.available 2022-04-27T13:35:26Z
dc.date.available 2025-09-18T13:26:57Z
dc.date.issued 2021
dc.description Ahmad, Israr/0000-0002-3053-1158; Shafiq, Muhammad/0000-0001-8589-8830; Ouannas, Adel/0000-0001-9611-2047 en_US
dc.description.abstract Introduction: Robust, stable financial systems significantly improve the growth of an economic system. The stabilization of financial systems poses the following challenges. The state variables' trajectories (i) lie outside the basin of attraction, (ii) have high oscillations, and (iii) converge to the equilibrium state slowly. Objectives: This paper aims to design a controller that develops a robust, stable financial closed-loop system to address the challenges above by (i) attracting all state variables to the origin, (ii) reducing the oscillations, and (iii) increasing the gradient of the convergence. Methods: This paper proposes a detailed mathematical analysis of the steady-state stability, dissipative characteristics, the Lyapunov exponents, bifurcation phenomena, and Poincare maps of chaotic financial dynamic systems. The proposed controller does not cancel the nonlinear terms appearing in the closed-loop. This structure is robust to the smoothly varying system parameters and improves closedloop efficiency. Further, the controller eradicates the effects of inevitable exogenous disturbances and accomplishes a faster, oscillation-free convergence of the perturbed state variables to the desired steady-state within a finite time. The Lyapunov stability analysis proves the closed-loop global stability. The paper also discusses finite-time stability analysis and describes the controller parameters' effects on the convergence rates. Computer-based simulations endorse the theoretical findings, and the comparative study highlights the benefits. Results: Theoretical analysis proofs and computer simulation results verify that the proposed controller compels the state trajectories, including trajectories outside the basin of attraction, to the origin within finite time without oscillations while being faster than the other controllers discussed in the comparative study section. Conclusions: This article proposes a novel robust, nonlinear finite-time controller for the robust stabilization of the chaotic finance model. It provides an in-depth analysis based on the Lyapunov stability theory and computer simulation results to verify the robust convergence of the state variables to the origin. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. en_US
dc.description.publishedMonth 9
dc.identifier.citation Ahmad, Israr...et al. (2021). "Finite-time stabilization of a perturbed chaotic finance model", Journal of Advanced Research, vol. 32, pp. 1-14. en_US
dc.identifier.doi 10.1016/j.jare.2021.06.013
dc.identifier.issn 2090-1232
dc.identifier.issn 2090-1224
dc.identifier.scopus 2-s2.0-85108565921
dc.identifier.uri https://doi.org/10.1016/j.jare.2021.06.013
dc.identifier.uri https://hdl.handle.net/123456789/12766
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Chaotic Finance System en_US
dc.subject Nonlinear Control en_US
dc.subject Chaos Suppression en_US
dc.subject Lyapunov Function en_US
dc.subject Finite-Time Stability en_US
dc.title Finite-Time Stabilization of a Perturbed Chaotic Finance Model en_US
dc.title Finite-time stabilization of a perturbed chaotic finance model tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ahmad, Israr/0000-0002-3053-1158
gdc.author.id Shafiq, Muhammad/0000-0001-8589-8830
gdc.author.id Ouannas, Adel/0000-0001-9611-2047
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57212422462
gdc.author.scopusid 56135753700
gdc.author.scopusid 56986744500
gdc.author.scopusid 36998895200
gdc.author.scopusid 7005872966
gdc.author.wosid Ouannas, Adel/Aae-2213-2022
gdc.author.wosid Shafiq, Muhammad/S-4791-2019
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Ahmad, Israr/Aac-1537-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Ahmad, Israr] Univ Technol & Appl Sci, Dept Gen Requirements, Coll Appl Sci, Nizwa, Oman; [Ouannas, Adel] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria; [Shafiq, Muhammad] Sultan Qaboos Univ, Dept Elect & Comp Engn, Muscat, Oman; [Pham, Viet-Thanh] Ton Duc Thang Univ, Fac Elect & Elect Engn, Nonlinear Syst & Applicat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] China Med Univ Taichung, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
gdc.description.endpage 14 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1 en_US
gdc.description.volume 32 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3174477285
gdc.identifier.pmid 34484821
gdc.identifier.wos WOS:000691466300001
gdc.openalex.fwci 3.9448954
gdc.openalex.normalizedpercentile 0.95
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 26
gdc.plumx.crossrefcites 35
gdc.plumx.mendeley 17
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 37
gdc.scopus.citedcount 33
gdc.wos.citedcount 31
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files