Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Discrete Fractional Diffusion Equation

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The tool of the discrete fractional calculus is introduced to discrete modeling of diffusion problem. A fractional time discretization diffusion model is presented in the Caputo-like delta's sense. The numerical formula is given in form of the equivalent summation. Then, the diffusion concentration is discussed for various fractional difference orders. The discrete fractional model is a fractionization of the classical difference equation and can be more suitable to depict the random or discrete phenomena compared with fractional partial differential equations.

Description

Zeng, Shengda/0000-0003-1818-842X; Wu, Guo-Cheng/0000-0002-1946-6770

Keywords

Discrete Fractional Calculus, Discrete Anomalous Diffusion, Discrete Fractional Partial Difference Equations

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Wu, G.C...et al. (2015). Discrete fractional diffusion equation. Nonlinear Dynamics, 80(1-2), 281-286. http://dx.doi.org/ 10.1007/s11071-014-1867-2

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
58

Source

Volume

80

Issue

1-2

Start Page

281

End Page

286
PlumX Metrics
Citations

CrossRef : 42

Scopus : 81

Captures

Mendeley Readers : 13

SCOPUS™ Citations

81

checked on Nov 24, 2025

Web of Science™ Citations

64

checked on Nov 24, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
8.18321579

Sustainable Development Goals

SDG data is not available