On a Combination of Fractional Differential and Integral Operators Associated With a Class of Normalized Functions
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Ibrahim, Rabha W. | |
| dc.date.accessioned | 2022-09-30T12:19:49Z | |
| dc.date.accessioned | 2025-09-18T16:07:11Z | |
| dc.date.available | 2022-09-30T12:19:49Z | |
| dc.date.available | 2025-09-18T16:07:11Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Recently, the combined fractional operator (CFO) is introduced and discussed in Baleanu et al. [1] in real domain. In this paper, we extend CFO to the complex domain and study its geometric properties in some normalized analytic functions including the starlike and convex functions. Moreover, we employ the complex CFO to modify a class of Briot-Bouquet differential equations in a complex region. As a consequence, the upper solution is illustrated by using the concept of subordination inequality. | en_US |
| dc.identifier.citation | Ibrahim, Rabha W.; Baleanu, Dumitru (2021). "On a combination of fractional differential and integral operators associated with a class of normalized functions", AIMS Mathematics, Vol. 6, No. 4, pp. 4211-4226. | en_US |
| dc.identifier.doi | 10.3934/math.2021249 | |
| dc.identifier.issn | 2473-6988 | |
| dc.identifier.scopus | 2-s2.0-85100456796 | |
| dc.identifier.uri | https://doi.org/10.3934/math.2021249 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14687 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
| dc.relation.ispartof | AIMS Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Calculus | en_US |
| dc.subject | Fractional Differential Operator | en_US |
| dc.subject | Univalent Function | en_US |
| dc.subject | Analytic Function | en_US |
| dc.subject | Subordination And Superordination | en_US |
| dc.subject | Open Unit Disk | en_US |
| dc.subject | Briot-Bouquet Differential Equation | en_US |
| dc.title | On a Combination of Fractional Differential and Integral Operators Associated With a Class of Normalized Functions | en_US |
| dc.title | On a combination of fractional differential and integral operators associated with a class of normalized functions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 16319225300 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Ibrahim, Rabha/D-3312-2017 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
| gdc.description.endpage | 4226 | en_US |
| gdc.description.issue | 4 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 4211 | en_US |
| gdc.description.volume | 6 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3128758083 | |
| gdc.identifier.wos | WOS:000672529900010 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 8.0 | |
| gdc.oaire.influence | 3.1748664E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Artificial intelligence | |
| gdc.oaire.keywords | Class (philosophy) | |
| gdc.oaire.keywords | Subordination (linguistics) | |
| gdc.oaire.keywords | Analytic Functions | |
| gdc.oaire.keywords | univalent function | |
| gdc.oaire.keywords | Biochemistry | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | analytic function | |
| gdc.oaire.keywords | Engineering | |
| gdc.oaire.keywords | Ecology | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Geometric Function Theory and Complex Analysis | |
| gdc.oaire.keywords | Nonlocal Partial Differential Equations and Boundary Value Problems | |
| gdc.oaire.keywords | FOS: Philosophy, ethics and religion | |
| gdc.oaire.keywords | Regular polygon | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Mechanics of Materials | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Thermodynamics | |
| gdc.oaire.keywords | Differential operator | |
| gdc.oaire.keywords | Type (biology) | |
| gdc.oaire.keywords | Geometry | |
| gdc.oaire.keywords | fractional calculus | |
| gdc.oaire.keywords | Operator (biology) | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | fractional differential operator | |
| gdc.oaire.keywords | Mechanics and Fracture of Nanomaterials and Composites | |
| gdc.oaire.keywords | Convex function | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | open unit disk | |
| gdc.oaire.keywords | Domain (mathematical analysis) | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Linguistics | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | briot-bouquet differential equation | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Philosophy | |
| gdc.oaire.keywords | FOS: Biological sciences | |
| gdc.oaire.keywords | FOS: Languages and literature | |
| gdc.oaire.keywords | Repressor | |
| gdc.oaire.keywords | subordination and superordination | |
| gdc.oaire.keywords | Geometry and Topology | |
| gdc.oaire.keywords | Differential (mechanical device) | |
| gdc.oaire.keywords | Transcription factor | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) | |
| gdc.oaire.keywords | Maximum principle, Schwarz's lemma, Lindelöf principle, analogues and generalizations; subordination | |
| gdc.oaire.keywords | Briot-Bouquet differential equation | |
| gdc.oaire.keywords | Coefficient problems for univalent and multivalent functions of one complex variable | |
| gdc.oaire.popularity | 7.754876E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.95918824 | |
| gdc.openalex.normalizedpercentile | 0.92 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 10 | |
| gdc.scopus.citedcount | 10 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
