Dynamic Prediction Modelling and Equilibrium Stability of a Fractional Discrete Biophysical Neuron Model
| dc.contributor.author | Rashid, Saima | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Ali, Elsiddeg | |
| dc.contributor.author | Egami, Ria H. | |
| dc.contributor.author | Al-Qurashi, Maysaa | |
| dc.date.accessioned | 2023-12-05T13:49:02Z | |
| dc.date.accessioned | 2025-09-18T16:07:52Z | |
| dc.date.available | 2023-12-05T13:49:02Z | |
| dc.date.available | 2025-09-18T16:07:52Z | |
| dc.date.issued | 2023 | |
| dc.description | Egami, Ria/0009-0004-2258-5166 | en_US |
| dc.description.abstract | Here, we contemplate discrete-time fractional-order neural connectivity using the discrete nabla operator. Taking into account significant advances in the analysis of discrete fractional calculus, as well as the assertion that the complexities of discrete-time neural networks in fractional-order contexts have not yet been adequately reported. Considering a dynamic fast-slow FitzHugh-Rinzel (FHR) framework for elliptic eruptions with a fixed number of features and a consistent power flow to identify such behavioural traits. In an attempt to determine the effect of a biological neuron, the extension of this integer-order framework offers a variety of neurogenesis reactions (frequent spiking, swift diluting, erupting, blended vibrations, etc.). It is still unclear exactly how much the fractional-order complexities may alter the fring attributes of excitatory structures. We investigate how the implosion of the integer-order reaction varies with perturbation, with predictability and bifurcation interpretation dependent on the fractional-order ������ & ISIN; (0,1]. The memory kernel of the fractional-order interactions is responsible for this. Despite the fact that an initial impulse delay is present, the fractional-order FHR framework has a lower fring incidence than the integer-order approximation. We also look at the responses of associated FHR receptors that synchronize at distinctive fractional orders and have weak interfacial expertise. This fractional-order structure can be formed to exhibit a variety of neurocomputational functionalities, thanks to its intriguing transient properties, which strengthen the responsive neurogenesis structures. | en_US |
| dc.identifier.citation | Al-Qurashi, Maysaa...et.al. (2023). "Dynamic prediction modelling and equilibrium stability of a fractional discrete biophysical neuron model", Results in Physics, Vol.48. | en_US |
| dc.identifier.doi | 10.1016/j.rinp.2023.106405 | |
| dc.identifier.issn | 2211-3797 | |
| dc.identifier.scopus | 2-s2.0-85151388681 | |
| dc.identifier.uri | https://doi.org/10.1016/j.rinp.2023.106405 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14880 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier | en_US |
| dc.relation.ispartof | Results in Physics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Difference Equation | en_US |
| dc.subject | Discrete Fractional Operator | en_US |
| dc.subject | Bursting Bifurcation | en_US |
| dc.subject | Steady-States | en_US |
| dc.subject | Synchronization | en_US |
| dc.title | Dynamic Prediction Modelling and Equilibrium Stability of a Fractional Discrete Biophysical Neuron Model | en_US |
| dc.title | Dynamic prediction modelling and equilibrium stability of a fractional discrete biophysical neuron model | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Egami, Ria/0009-0004-2258-5166 | |
| gdc.author.scopusid | 57045880100 | |
| gdc.author.scopusid | 57200041124 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.scopusid | 58165466100 | |
| gdc.author.scopusid | 58165466200 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.author.wosid | Rashid, Saima/Aaf-7976-2021 | |
| gdc.author.wosid | Egami, Ria/Jdw-1996-2023 | |
| gdc.author.yokid | 234808 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Al-Qurashi, Maysaa] King Saud Univ, Dept Math, POB 22452, Riyadh 11495, Saudi Arabia; [Al-Qurashi, Maysaa] Saudi Elect Univ, Dept Math, Riyadh, Saudi Arabia; [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkiye; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Ali, Elsiddeg] Taif Univ, Turabah Univ Coll, Dept Math, POB 11099, Taif 21944, Saudi Arabia; [Egami, Ria H.] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Sulail, Dept Math, Al Kharj, Saudi Arabia | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 106405 | |
| gdc.description.volume | 48 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4361289888 | |
| gdc.identifier.wos | WOS:001025892600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 13.0 | |
| gdc.oaire.influence | 2.9622937E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Steady-states | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | QC1-999 | |
| gdc.oaire.keywords | Fractional difference equation | |
| gdc.oaire.keywords | Synchronization | |
| gdc.oaire.keywords | Discrete fractional operator | |
| gdc.oaire.keywords | Bursting bifurcation | |
| gdc.oaire.popularity | 1.1969101E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0301 basic medicine | |
| gdc.oaire.sciencefields | 03 medical and health sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 3.4508028 | |
| gdc.openalex.normalizedpercentile | 0.9 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 11 | |
| gdc.plumx.crossrefcites | 12 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 18 | |
| gdc.publishedmonth | 5 | |
| gdc.scopus.citedcount | 18 | |
| gdc.virtual.author | Jarad, Fahd | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
