The Hausdorff-Pompeiu Distance in Gn-Menger Fractal Spaces
No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Mdpi
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
This paper introduces a complete Gn-Menger space and defines the Hausdorff-Pompeiu distance in the space. Furthermore, we show a novel fixed-point theorem for Gn-Menger-theta-contractions in fractal spaces.
Description
Li, Chenkuan/0000-0001-7098-8059; Saadati, Reza/0000-0002-6770-6951
Keywords
Fixed Point, Generalized Contraction, Hausdorff-Pompeiu Distance, Iterated Function System, Gn-Menger Fractal Space, fixed point; generalized contraction; Hausdorff–Pompeiu distance; iterated function system; <i>Gn</i>-Menger fractal space, generalized contraction, fixed point, QA1-939, Hausdorff–Pompeiu distance, iterated function system, <i>Gn</i>-Menger fractal space, Mathematics
Turkish CoHE Thesis Center URL
Fields of Science
0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 0101 mathematics, 01 natural sciences
Citation
O’Regan, Donal...et.al. (2022). "The Hausdorff–Pompeiu Distance in Gn-Menger Fractal Spaces", Mathematics, Vol.10, No.16, pp.1-16.
WoS Q
Q1
Scopus Q
Q2

OpenCitations Citation Count
N/A
Source
Mathematics
Volume
10
Issue
16
Start Page
2958
End Page
PlumX Metrics
Citations
Scopus : 0
Google Scholar™


