Lie Group Theory for Nonlinear Fractional K(M, N) Type Equation With Variable Coefficients
| dc.contributor.author | Kadkhoda, N. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.author | Jafari, H. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2023-02-16T12:49:42Z | |
| dc.date.accessioned | 2025-09-18T12:09:12Z | |
| dc.date.available | 2023-02-16T12:49:42Z | |
| dc.date.available | 2025-09-18T12:09:12Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | We investigated the analytical solution of fractional order K(m, n) type equation with variable coefficient which is an extended type of KdV equations into a genuinely nonlinear dispersion regime. By using the Lie symmetry analysis, we obtain the Lie point symmetries for this type of time-fractional partial differential equations (PDE). Also we present the corresponding reduced fractional differential equations (FDEs) corresponding to the time-fractional K(m, n) type equation. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. | en_US |
| dc.identifier.citation | Jafari, H.; Kadkhoda, N.; Baleanu, Dumitru (2022). "Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients", Studies in Systems, Decision and Control, Vol. 373, pp. 207-227. | en_US |
| dc.identifier.doi | 10.1007/978-3-030-77169-0_8 | |
| dc.identifier.issn | 2198-4182 | |
| dc.identifier.scopus | 2-s2.0-85114883446 | |
| dc.identifier.uri | https://doi.org/10.1007/978-3-030-77169-0_8 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11344 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
| dc.relation.ispartof | Studies in Systems, Decision and Control | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractional Differential Equation | en_US |
| dc.subject | Fractional Order K(M | en_US |
| dc.subject | Lie Symmetry Analysis Method | en_US |
| dc.subject | N) Type Equation | en_US |
| dc.subject | Reduced Equation | en_US |
| dc.title | Lie Group Theory for Nonlinear Fractional K(M, N) Type Equation With Variable Coefficients | en_US |
| dc.title | Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients | tr_TR |
| dc.type | Book Part | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 26642881400 | |
| gdc.author.scopusid | 55123166100 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Jafari H., Department of Mathematics, University of Mazandaran, Babolsar, Iran, Department of Mathematical Sciences, University of South Africa, UNISA0003, Pretoria, South Africa; Kadkhoda N., Department of Mathematics, Faculty of Basic Sciences, Bozorgmehr University of Qaenat, Qaenat, Iran; Baleanu D., Department of Mathematics, Faculty of Art and Sciences, Cankaya University, Ankara, Turkey, Institute of Space Sciences, Magurele-Bucharest, Magurele, Romania | en_US |
| gdc.description.endpage | 227 | en_US |
| gdc.description.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 207 | en_US |
| gdc.description.volume | 373 | en_US |
| gdc.identifier.openalex | W3034892397 | |
| gdc.openalex.fwci | 3.43791358 | |
| gdc.openalex.normalizedpercentile | 0.92 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 4 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 6 | |
| gdc.scopus.citedcount | 6 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |