Existence of Solutions of Non-Autonomous Fractional Differential Equations With Integral Impulse Condition
No Thumbnail Available
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In this paper, we investigate the existence of solution of non-autonomous fractional differential equations with integral impulse condition by the measure of non-compactness (MNC), fixed point theorems, andk-set contraction. The obtained results are verified via a supporting example.
Description
Ravichandran, Chokkalingam/0000-0003-0214-1280; Nisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320
Keywords
Functional-Differential Equations With Fractional Derivatives, Non-Autonomous Evolution Equation, Fixed Point Theorems, Compact space, Fixed point theorems, Theory and Applications of Fractional Differential Equations, Mathematical analysis, Contraction mapping, Quantum mechanics, Differential equation, Numerical Methods for Singularly Perturbed Problems, QA1-939, FOS: Mathematics, Internal medicine, Anomalous Diffusion Modeling and Analysis, Integral equation, Numerical Analysis, Impulsive Differential Equations, Non-autonomous evolution equation, Applied Mathematics, Physics, Impulse (physics), Fractional calculus, Partial differential equation, Contraction principle, Fixed point, Applied mathematics, Modeling and Simulation, Physical Sciences, Contraction (grammar), Medicine, Functional-differential equations with fractional derivatives, Mathematics, Ordinary differential equation, Fractional ordinary differential equations, non-autonomous evolution equation, Fractional derivatives and integrals, Applications of operator theory to differential and integral equations, functional-differential equations with fractional derivatives, fixed point theorems
Turkish CoHE Thesis Center URL
Fields of Science
01 natural sciences, 0101 mathematics
Citation
Kumar, Ashish...et al. (2020). "Existence of solutions of non-autonomous fractional differential equations with integral impulse condition", Advances in Difference Equations, Vol. 2020, No. 1.
WoS Q
Q1
Scopus Q

OpenCitations Citation Count
48
Source
Advances in Difference Equations
Volume
2020
Issue
1
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 26
Scopus : 76
Captures
Mendeley Readers : 10
SCOPUS™ Citations
76
checked on Feb 03, 2026
Web of Science™ Citations
66
checked on Feb 03, 2026
Page Views
3
checked on Feb 03, 2026
Google Scholar™


