Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited

Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this note, we have as main purpose to investigate the Ulam-Hyers stability of a fractional Volterra integral equation through the Banach fixed point theorem and present an example on Ulam-Hyers stability using operator theory alpha-resolvent in order to elucidate the investigated result. Our results modify the Theorem 4 of Sousa and et. al. [Sousa JVC, Rodrigues FG, Oliveira EC. Stability of the fractional Volterra integro-differential equation by means of psi-Hilfer operator. Math Meth Appl Sci. 2019;42(9):3033-3043.] and present a corrected proof with a modified approximation.

Description

Sousa, Jose Vanterler/0000-0002-6986-948X

Keywords

Fixed Point Theorem, Fractional Volterra Integral Equation, Ulam&#8208, Hyers Stability, &#936, &#8208, Hilfer Fractional Derivative

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Baleanu, Dumitru; Saadati, Reza; Sousa, José (2021). "The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited", Mathematical Methods in the Applied Sciences, Vol. 44, No. 13, pp. 10905-10911.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

44

Issue

13

Start Page

10905

End Page

10911