The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited
dc.authorid | Sousa, Jose Vanterler/0000-0002-6986-948X | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 15926186800 | |
dc.authorscopusid | 57203261728 | |
dc.authorwosid | Saadati, Reza/C-6330-2018 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Sousa, Jose Vanterler/O-4682-2017 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Saadati, Reza | |
dc.contributor.author | Sousa, Jose | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2023-02-09T06:42:48Z | |
dc.date.available | 2023-02-09T06:42:48Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Saadati, Reza] Iran Univ Sci & Technol, Dept Math, Tehran, Iran; [Sousa, Jose] Imecc State Univ Campinas, Dept Appl Math, Campinas, Brazil | en_US |
dc.description | Sousa, Jose Vanterler/0000-0002-6986-948X | en_US |
dc.description.abstract | In this note, we have as main purpose to investigate the Ulam-Hyers stability of a fractional Volterra integral equation through the Banach fixed point theorem and present an example on Ulam-Hyers stability using operator theory alpha-resolvent in order to elucidate the investigated result. Our results modify the Theorem 4 of Sousa and et. al. [Sousa JVC, Rodrigues FG, Oliveira EC. Stability of the fractional Volterra integro-differential equation by means of psi-Hilfer operator. Math Meth Appl Sci. 2019;42(9):3033-3043.] and present a corrected proof with a modified approximation. | en_US |
dc.description.publishedMonth | 9 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, Dumitru; Saadati, Reza; Sousa, José (2021). "The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited", Mathematical Methods in the Applied Sciences, Vol. 44, No. 13, pp. 10905-10911. | en_US |
dc.identifier.doi | 10.1002/mma.7348 | |
dc.identifier.endpage | 10911 | en_US |
dc.identifier.issn | 0170-4214 | |
dc.identifier.issn | 1099-1476 | |
dc.identifier.issue | 13 | en_US |
dc.identifier.scopus | 2-s2.0-85102623142 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 10905 | en_US |
dc.identifier.uri | https://doi.org/10.1002/mma.7348 | |
dc.identifier.volume | 44 | en_US |
dc.identifier.wos | WOS:000630031400001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 5 | |
dc.subject | Fixed Point Theorem | en_US |
dc.subject | Fractional Volterra Integral Equation | en_US |
dc.subject | Ulam‐ | en_US |
dc.subject | Hyers Stability | en_US |
dc.subject | Ψ | en_US |
dc.subject | ‐ | en_US |
dc.subject | Hilfer Fractional Derivative | en_US |
dc.title | The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited | tr_TR |
dc.title | The Stability of the Fractional Volterra Integro-Differential Equation by Means of Ψ-Hilfer Operator Revisited | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 4 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |