Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited

dc.authorid Sousa, Jose Vanterler/0000-0002-6986-948X
dc.authorscopusid 7005872966
dc.authorscopusid 15926186800
dc.authorscopusid 57203261728
dc.authorwosid Saadati, Reza/C-6330-2018
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Sousa, Jose Vanterler/O-4682-2017
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Saadati, Reza
dc.contributor.author Sousa, Jose
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-02-09T06:42:48Z
dc.date.available 2023-02-09T06:42:48Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Saadati, Reza] Iran Univ Sci & Technol, Dept Math, Tehran, Iran; [Sousa, Jose] Imecc State Univ Campinas, Dept Appl Math, Campinas, Brazil en_US
dc.description Sousa, Jose Vanterler/0000-0002-6986-948X en_US
dc.description.abstract In this note, we have as main purpose to investigate the Ulam-Hyers stability of a fractional Volterra integral equation through the Banach fixed point theorem and present an example on Ulam-Hyers stability using operator theory alpha-resolvent in order to elucidate the investigated result. Our results modify the Theorem 4 of Sousa and et. al. [Sousa JVC, Rodrigues FG, Oliveira EC. Stability of the fractional Volterra integro-differential equation by means of psi-Hilfer operator. Math Meth Appl Sci. 2019;42(9):3033-3043.] and present a corrected proof with a modified approximation. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Saadati, Reza; Sousa, José (2021). "The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited", Mathematical Methods in the Applied Sciences, Vol. 44, No. 13, pp. 10905-10911. en_US
dc.identifier.doi 10.1002/mma.7348
dc.identifier.endpage 10911 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 13 en_US
dc.identifier.scopus 2-s2.0-85102623142
dc.identifier.scopusquality Q1
dc.identifier.startpage 10905 en_US
dc.identifier.uri https://doi.org/10.1002/mma.7348
dc.identifier.volume 44 en_US
dc.identifier.wos WOS:000630031400001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject Fixed Point Theorem en_US
dc.subject Fractional Volterra Integral Equation en_US
dc.subject Ulam&#8208 en_US
dc.subject Hyers Stability en_US
dc.subject &#936 en_US
dc.subject &#8208 en_US
dc.subject Hilfer Fractional Derivative en_US
dc.title The stability of the fractional Volterra integro-differential equation by means of Ψ-Hilfer operator revisited tr_TR
dc.title The Stability of the Fractional Volterra Integro-Differential Equation by Means of Ψ-Hilfer Operator Revisited en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Letter.pdf
Size:
241.07 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: