Existence and Uniqueness of Solutions to Fractional Differential Equations in the Frame of Generalized Caputo Fractional Derivatives
| dc.contributor.author | Gambo, Y. Y. | |
| dc.contributor.author | Ameen, R. | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Abdeljawad, T. | |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2025-10-06T17:36:35Z | |
| dc.date.available | 2025-10-06T17:36:35Z | |
| dc.date.issued | 2018 | |
| dc.description | Abdeljawad, Thabet/0000-0002-8889-3768; Gambo, Yusuf Ya'U/0000-0002-3954-3200; Jarad, Fahd/0000-0002-3303-0623 | |
| dc.description.abstract | The generalized Caputo fractional derivative is a name attributed to the Caputo version of the generalized fractional derivative introduced in Jarad et al. (J. Nonlinear Sci. Appl. 10:2607-2619, 2017). Depending on the value of. in the limiting case, the generality of the derivative is that it gives birth to two different fractional derivatives. However, the existence and uniqueness of solutions to fractional differential equations with generalized Caputo fractional derivatives have not been proven. In this paper, Cauchy problems for differential equations with the above derivative in the space of continuously differentiable functions are studied. Nonlinear Volterra type integral equations of the second kind corresponding to the Cauchy problem are presented. Using Banach fixed point theorem, the existence and uniqueness of solution to the considered Cauchy problem is proven based on the results obtained. | |
| dc.description.sponsorship | Prince Sultan University through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) [RG-DES-2017-01-17] | |
| dc.description.sponsorship | The fourth author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. | |
| dc.identifier.doi | 10.1186/s13662-018-1594-y | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85045408495 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-018-1594-y | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/15658 | |
| dc.language.iso | en | |
| dc.publisher | Springer | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Generalized Caputo Fractional Derivative | |
| dc.subject | Existence And Uniqueness | |
| dc.subject | Cauchy Problem | |
| dc.title | Existence and Uniqueness of Solutions to Fractional Differential Equations in the Frame of Generalized Caputo Fractional Derivatives | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.id | Abdeljawad, Thabet/0000-0002-8889-3768 | |
| gdc.author.id | Gambo, Yusuf Ya'U/0000-0002-3954-3200 | |
| gdc.author.id | Jarad, Fahd/0000-0002-3303-0623 | |
| gdc.author.institutional | Jarad, Fahd | |
| gdc.author.institutional | Abdeljawad, Thabet | |
| gdc.author.scopusid | 56637026500 | |
| gdc.author.scopusid | 57201613823 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.scopusid | 6508051762 | |
| gdc.author.wosid | Gambo, Yusuf/B-3709-2014 | |
| gdc.author.wosid | Abdeljawad, Thabet/T-8298-2018 | |
| gdc.author.wosid | Ameen, Raad/Aag-9287-2021 | |
| gdc.author.wosid | Gambo, Yusuf Ya'U/B-3709-2014 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.description.department | Çankaya University | |
| gdc.description.departmenttemp | [Gambo, Y. Y.] Northwest Univ Kano, Fac Sci, Dept Math, Kano, Nigeria; [Ameen, R.] Selcuk Univ, Dept Math, Konya, Turkey; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Abdeljawad, T.] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W2797499680 | |
| gdc.identifier.wos | WOS:000430624900001 | |
| gdc.openalex.fwci | 4.7810118 | |
| gdc.openalex.normalizedpercentile | 0.96 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 40 | |
| gdc.plumx.crossrefcites | 17 | |
| gdc.plumx.mendeley | 16 | |
| gdc.plumx.scopuscites | 65 | |
| gdc.scopus.citedcount | 64 | |
| gdc.wos.citedcount | 47 | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |