Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Fusion of smartphone sensor data for classification of daily user activities

dc.authorid Misra, Sanjay/0000-0002-3556-9331
dc.authorid Maskeliunas, Rytis/0000-0002-2809-2213
dc.authorid Sengul, Gokhan/0000-0003-2273-4411
dc.authorscopusid 8402817900
dc.authorscopusid 26424777100
dc.authorscopusid 56962766700
dc.authorscopusid 6603451290
dc.authorscopusid 27467587600
dc.authorwosid Ozcelik, Erol/Aad-4252-2019
dc.authorwosid Şengül, Gökhan/Aaa-2788-2022
dc.authorwosid Misra, Sanjay/K-2203-2014
dc.authorwosid Maskeliunas, Rytis/J-7173-2017
dc.contributor.author Sengul, Gokhan
dc.contributor.author Özçelik, Erol
dc.contributor.author Ozcelik, Erol
dc.contributor.author Misra, Sanjay
dc.contributor.author Damasevicius, Robertas
dc.contributor.author Maskeliunas, Rytis
dc.contributor.authorID 115500 tr_TR
dc.contributor.other Psikoloji
dc.date.accessioned 2022-05-11T10:07:42Z
dc.date.available 2022-05-11T10:07:42Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Sengul, Gokhan; Misra, Sanjay] Atilim Univ, Dept Comp Engn, AnkaraKizilcasar Mah, Incek, Turkey; [Ozcelik, Erol] Cankaya Univ, Yukariyurtcu Mahallesi,Mimar Sinan Caddesi 4, TR-06790 Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota 0123, Nigeria; [Damasevicius, Robertas] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Vileikos 8, Kaunas, Lithuania en_US
dc.description Misra, Sanjay/0000-0002-3556-9331; Maskeliunas, Rytis/0000-0002-2809-2213; Sengul, Gokhan/0000-0003-2273-4411 en_US
dc.description.abstract New mobile applications need to estimate user activities by using sensor data provided by smart wearable devices and deliver context-aware solutions to users living in smart environments. We propose a novel hybrid data fusion method to estimate three types of daily user activities (being in a meeting, walking, and driving with a motorized vehicle) using the accelerometer and gyroscope data acquired from a smart watch using a mobile phone. The approach is based on the matrix time series method for feature fusion, and the modified Better-than-the-Best Fusion (BB-Fus) method with a stochastic gradient descent algorithm for construction of optimal decision trees for classification. For the estimation of user activities, we adopted a statistical pattern recognition approach and used the k-Nearest Neighbor (kNN) and Support Vector Machine (SVM) classifiers. We acquired and used our own dataset of 354 min of data from 20 subjects for this study. We report a classification performance of 98.32 % for SVM and 97.42 % for kNN. en_US
dc.description.publishedMonth 10
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Şengül, Gökhan...at all (2021). "Fusion of smartphone sensor data for classification of daily user activities", Multimedia Tools and Applications, Vol. 80, No. 24, pp. 33527-33546. en_US
dc.identifier.doi 10.1007/s11042-021-11105-6
dc.identifier.endpage 33546 en_US
dc.identifier.issn 1380-7501
dc.identifier.issn 1573-7721
dc.identifier.issue 24 en_US
dc.identifier.scopus 2-s2.0-85113190488
dc.identifier.scopusquality Q2
dc.identifier.startpage 33527 en_US
dc.identifier.uri https://doi.org/10.1007/s11042-021-11105-6
dc.identifier.volume 80 en_US
dc.identifier.wos WOS:000686840500002
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 20
dc.subject Human Activity Recognition en_US
dc.subject Wearable Intelligence en_US
dc.subject Feature Fusion en_US
dc.title Fusion of smartphone sensor data for classification of daily user activities tr_TR
dc.title Fusion of Smartphone Sensor Data for Classification of Daily User Activities en_US
dc.type Article en_US
dc.wos.citedbyCount 16
dspace.entity.type Publication
relation.isAuthorOfPublication 429d992d-cf07-41a7-a1c5-6238f8a93f59
relation.isAuthorOfPublication.latestForDiscovery 429d992d-cf07-41a7-a1c5-6238f8a93f59
relation.isOrgUnitOfPublication a992ac7e-d4b6-49ec-a865-b3e838e73b75
relation.isOrgUnitOfPublication.latestForDiscovery a992ac7e-d4b6-49ec-a865-b3e838e73b75

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: