Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Inference in multivariate linear regression models with elliptically distributed errors

dc.authorid Yazici, Mehmet/0000-0003-2924-9865
dc.authorscopusid 55547120879
dc.authorscopusid 6602194368
dc.authorscopusid 35241352200
dc.authorwosid Yazici, Mehmet/Gwz-2001-2022
dc.contributor.author Yıldırım, Fetih
dc.contributor.author Islam, M. Qamarul
dc.contributor.author Yildirim, Fetih
dc.contributor.author Yazıcı, Mehmet
dc.contributor.author Yazici, Mehmet
dc.contributor.authorID 6772 tr_TR
dc.contributor.authorID 144084 tr_TR
dc.contributor.other Ortak Dersler Bölümü
dc.contributor.other İktisat
dc.date.accessioned 2017-06-22T12:13:54Z
dc.date.available 2017-06-22T12:13:54Z
dc.date.issued 2014
dc.department Çankaya University en_US
dc.department-temp [Islam, M. Qamarul; Yazici, Mehmet] Cankaya Univ, Dept Econ, Ankara, Turkey; [Yildirim, Fetih] Cankaya Univ, Dept Ind Engn, Ankara, Turkey en_US
dc.description Yazici, Mehmet/0000-0003-2924-9865 en_US
dc.description.abstract In this study we investigate the problem of estimation and testing of hypotheses in multivariate linear regression models when the errors involved are assumed to be non-normally distributed. We consider the class of heavy-tailed distributions for this purpose. Although our method is applicable for any distribution in this class, we take the multivariate t-distribution for illustration. This distribution has applications in many fields of applied research such as Economics, Business, and Finance. For estimation purpose, we use the modified maximum likelihood method in order to get the so-called modified maximum likelihood estimates that are obtained in a closed form. We show that these estimates are substantially more efficient than least-square estimates. They are also found to be robust to reasonable deviations from the assumed distribution and also many data anomalies such as the presence of outliers in the sample, etc. We further provide test statistics for testing the relevant hypothesis regarding the regression coefficients. en_US
dc.description.publishedMonth 8
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Islam, M.Q., Yıldırım, F., Yazıcı, M. (2014). Inference in multivariate linear regression models with elliptically distributed errors. Journal of Applied Statistics, 41(8), 1746-1766. http://dx.doi.org/10.1080/02664763.2014.890177 en_US
dc.identifier.doi 10.1080/02664763.2014.890177
dc.identifier.endpage 1766 en_US
dc.identifier.issn 0266-4763
dc.identifier.issn 1360-0532
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-84899966808
dc.identifier.scopusquality Q2
dc.identifier.startpage 1746 en_US
dc.identifier.uri https://doi.org/10.1080/02664763.2014.890177
dc.identifier.volume 41 en_US
dc.identifier.wos WOS:000335854900008
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Least-Squares Estimates en_US
dc.subject Maximum Likelihood Estimates en_US
dc.subject Modified Maximum Likelihood Estimates en_US
dc.subject Multivariate Distributions en_US
dc.subject Multivariate T-Distribution en_US
dc.subject Robust Estimates en_US
dc.subject 62J05 en_US
dc.subject 62F35 en_US
dc.subject 62H12 en_US
dc.title Inference in multivariate linear regression models with elliptically distributed errors tr_TR
dc.title Inference in Multivariate Linear Regression Models With Elliptically Distributed Errors en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 09868825-e320-437d-a3c4-cb0cde1e7773
relation.isAuthorOfPublication 02e2c039-f4df-42e5-ad8c-b569f9d4c9cc
relation.isAuthorOfPublication.latestForDiscovery 09868825-e320-437d-a3c4-cb0cde1e7773
relation.isOrgUnitOfPublication c26f9572-660d-46b5-a627-8e3068321c89
relation.isOrgUnitOfPublication d09f65f8-a5a4-46a9-97c8-dd42f4e7c29e
relation.isOrgUnitOfPublication.latestForDiscovery c26f9572-660d-46b5-a627-8e3068321c89

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: