Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Inference in multivariate linear regression models with elliptically distributed errors

dc.contributor.authorIslam, M. Qamarul
dc.contributor.authorYıldırım, Fetih
dc.contributor.authorYazıcı, Mehmet
dc.contributor.authorID6772tr_TR
dc.contributor.authorID144084tr_TR
dc.date.accessioned2017-06-22T12:13:54Z
dc.date.available2017-06-22T12:13:54Z
dc.date.issued2014
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü; Çankaya Üniversitesi, İktisadi ve İdari bilimler Fakültesi, İktisat Bölümüen_US
dc.description.abstractIn this study we investigate the problem of estimation and testing of hypotheses in multivariate linear regression models when the errors involved are assumed to be non-normally distributed. We consider the class of heavy-tailed distributions for this purpose. Although our method is applicable for any distribution in this class, we take the multivariate t-distribution for illustration. This distribution has applications in many fields of applied research such as Economics, Business, and Finance. For estimation purpose, we use the modified maximum likelihood method in order to get the so-called modified maximum likelihood estimates that are obtained in a closed form. We show that these estimates are substantially more efficient than least-square estimates. They are also found to be robust to reasonable deviations from the assumed distribution and also many data anomalies such as the presence of outliers in the sample, etc. We further provide test statistics for testing the relevant hypothesis regarding the regression coefficientsen_US
dc.description.publishedMonth8
dc.identifier.citationIslam, M.Q., Yıldırım, F., Yazıcı, M. (2014). Inference in multivariate linear regression models with elliptically distributed errors. Journal of Applied Statistics, 41(8), 1746-1766. http://dx.doi.org/10.1080/02664763.2014.890177en_US
dc.identifier.doi10.1080/02664763.2014.890177
dc.identifier.endpage1766en_US
dc.identifier.issn0266-4763
dc.identifier.issue8en_US
dc.identifier.startpage1746en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1628
dc.identifier.volume41en_US
dc.language.isoenen_US
dc.publisherTaylor&Francis Ltden_US
dc.relation.ispartofJournal of Applied Statisticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLeast-Squares Estimatesen_US
dc.subjectMaximum Likelihood Estimatesen_US
dc.subjectModified Maximum Likelihood Estimatesen_US
dc.subjectMultivariate Distributionsen_US
dc.subjectMultivariate T-Distributionen_US
dc.subjectRobust Estimatesen_US
dc.subject62J05en_US
dc.subject62F35en_US
dc.subject62H12en_US
dc.titleInference in multivariate linear regression models with elliptically distributed errorstr_TR
dc.titleInference in Multivariate Linear Regression Models With Elliptically Distributed Errorsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: