Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Functions
| dc.contributor.author | Abbas, Muhammad | |
| dc.contributor.author | Iqbal, Muhammad Kashif | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Amin, Muhammad | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-08-29T11:51:41Z | |
| dc.date.accessioned | 2025-09-18T15:44:11Z | |
| dc.date.available | 2022-08-29T11:51:41Z | |
| dc.date.available | 2025-09-18T15:44:11Z | |
| dc.date.issued | 2020 | |
| dc.description | Iqbal, Muhammad Kashif/0000-0003-4442-7498; Abbas, Dr. Muhammad/0000-0002-0491-1528 | en_US |
| dc.description.abstract | In this article we develop a numerical algorithm based on redefined extended cubic B-spline functions to explore the approximate solution of the time-fractional Klein-Gordon equation. The proposed technique employs the finite difference formulation to discretize the Caputo fractional time derivative of order alpha is an element of (1, 2] and uses redefined extended cubic B-spline functions to interpolate the solution curve over a spatial grid. A stability analysis of the scheme is conducted, which confirms that the errors do not amplify during execution of the numerical procedure. The derivation of a uniform convergence result reveals that the scheme isO(h(2)+ Delta t(2-alpha)) accurate. Some computational experiments are carried out to verify the theoretical results. Numerical simulations comparing the proposed method with existing techniques demonstrate that our scheme yields superior outcomes. | en_US |
| dc.description.publishedMonth | 9 | |
| dc.identifier.citation | Amin, Muhammad...et al. (2020). "Numerical Treatment of Time-Fractional Klein–Gordon Equation Using Redefined Extended Cubic B-Spline Functions", Frontiers in Physics, Vol. 8. | en_US |
| dc.identifier.doi | 10.3389/fphy.2020.00288 | |
| dc.identifier.issn | 2296-424X | |
| dc.identifier.scopus | 2-s2.0-85092115826 | |
| dc.identifier.uri | https://doi.org/10.3389/fphy.2020.00288 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14163 | |
| dc.language.iso | en | en_US |
| dc.publisher | Frontiers Media Sa | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Redefined Extended Cubic B-Spline | en_US |
| dc.subject | Time Fractional Klein-Gorden Equation | en_US |
| dc.subject | Caputo Fractional Derivative | en_US |
| dc.subject | Finite Difference Method | en_US |
| dc.subject | Convergence Analysis | en_US |
| dc.title | Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Functions | en_US |
| dc.title | Numerical Treatment of Time-Fractional Klein–Gordon Equation Using Redefined Extended Cubic B-Spline Functions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Iqbal, Muhammad Kashif/0000-0003-4442-7498 | |
| gdc.author.id | Abbas, Dr. Muhammad/0000-0002-0491-1528 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 58172325400 | |
| gdc.author.scopusid | 43660960400 | |
| gdc.author.scopusid | 57203844999 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Abbas, Muhammad/K-8190-2019 | |
| gdc.author.wosid | Amin, Muhammad/Aab-5519-2021 | |
| gdc.author.wosid | Iqbal, Muhammad Kashif/Hkm-9371-2023 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Amin, Muhammad] Natl Coll Business Adm & Econ, Dept Math, Lahore, Pakistan; [Amin, Muhammad] Univ Sargodha, Dept Math, Sargodha, Pakistan; [Abbas, Muhammad] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam; [Abbas, Muhammad] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam; [Iqbal, Muhammad Kashif] Govt Coll Univ, Dept Math, Faisalabad, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 8 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3088435881 | |
| gdc.identifier.wos | WOS:000575473600001 | |
| gdc.openalex.fwci | 0.88994071 | |
| gdc.openalex.normalizedpercentile | 0.83 | |
| gdc.opencitations.count | 34 | |
| gdc.plumx.mendeley | 11 | |
| gdc.plumx.scopuscites | 39 | |
| gdc.scopus.citedcount | 39 | |
| gdc.wos.citedcount | 38 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |