Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

A New Robust Harris Hawk Optimization Algorithm for Large Quadratic Assignment Problems

dc.contributor.author Dokeroglu, Tansel
dc.contributor.author Ozdemir, Yavuz Selim
dc.contributor.authorID 234173 tr_TR
dc.date.accessioned 2023-11-23T08:05:06Z
dc.date.accessioned 2025-09-18T12:10:26Z
dc.date.available 2023-11-23T08:05:06Z
dc.date.available 2025-09-18T12:10:26Z
dc.date.issued 2023
dc.description.abstract Harris Hawk optimization (HHO) is a new robust metaheuristic algorithm proposed for the solution of large intractable combinatorial optimization problems. The hawks are cooperative birds and use many intelligent hunting techniques. This study proposes new HHO algorithms for solving the well-known quadratic assignment problem (QAP). Large instances of the QAP have not been solved exactly yet. We implement HHO algorithms with robust tabu search (HHO-RTS) and introduce new operators that simulate the actions of hawks. We also developed an island parallel version of the HHO-RTS algorithm using the message passing interface. We verify the performance of our proposed algorithms on the QAPLIB benchmark library. One hundred and twenty-five of 135 problems are solved optimally, and the average deviation of all the problems is observed to be 0.020%. The HHO-RTS algorithm is a robust algorithm compared to recent studies in the literature. en_US
dc.description.publishedMonth 6
dc.identifier.citation Dokeroglu, Tansel; Ozdemir, Yavuz Selim. (2023). "A new robust Harris Hawk optimization algorithm for large quadratic assignment problems", Neural Computing & Applications, Vol. 35, No. 17, pp. 12531-12544. en_US
dc.identifier.doi 10.1007/s00521-023-08387-2
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85149107207
dc.identifier.uri https://doi.org/10.1007/s00521-023-08387-2
dc.identifier.uri https://hdl.handle.net/123456789/11731
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Harris Hawk Optimization en_US
dc.subject Quadratic Assignment Problem en_US
dc.subject Metaheuristic en_US
dc.subject Tabu Search en_US
dc.title A New Robust Harris Hawk Optimization Algorithm for Large Quadratic Assignment Problems en_US
dc.title A new robust Harris Hawk optimization algorithm for large quadratic assignment problems tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Dökeroğlu, Tansel
gdc.author.scopusid 55569137100
gdc.author.scopusid 54984000100
gdc.author.wosid Dökeroğlu, Tansel/Aaw-7857-2020
gdc.author.wosid Ozdemir, Yavuz/Aat-3675-2021
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Dokeroglu, Tansel] Cankaya Univ, Software Engn Dept, Ankara, Turkiye; [Ozdemir, Yavuz Selim] Ankara Sci Univ, Ind Engn Dept, Ankara, Turkiye en_US
gdc.description.endpage 12544 en_US
gdc.description.issue 17 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 12531 en_US
gdc.description.volume 35 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4322769353
gdc.identifier.wos WOS:000943008600004
gdc.openalex.fwci 1.53265733
gdc.openalex.normalizedpercentile 0.83
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 9
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.wos.citedcount 3
relation.isAuthorOfPublication 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isAuthorOfPublication.latestForDiscovery 6701315b-602f-4748-a3ef-23ff7b52ea1d
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files