Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

An Analysis for Klein-Gordon Equation Using Fractional Derivative Having Mittag-Leffler Kernel

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Kumar, Amit
dc.date.accessioned 2022-03-11T13:52:30Z
dc.date.accessioned 2025-09-18T15:44:53Z
dc.date.available 2022-03-11T13:52:30Z
dc.date.available 2025-09-18T15:44:53Z
dc.date.issued 2021
dc.description Kumar, Amit/0000-0002-3775-7037 en_US
dc.description.abstract Within this paper, we present an analysis of the fractional model of the Klein-Gordon (K-G) equation. K-G equation is considered as one of the significant equations in mathematical physics that describe the interaction of soliton in a collision less plasma. In a novel aspect of this work, we have used the latest form of fractional derivative (FCs), which contains the Mittag-Leffler type of kernel. The homotopy analysis transform method (HATM) is being taken to solve the fractional model of the K-G equation. A convergence study of HATM has been studied. The existence and uniqueness of the solution for the fractional K-G equation are presented. For verifying the obtained numerical outcomes regarding accuracy and competency, we have given different graphical presentations. Figures are reflecting that a novel form of the technique is a good organization in respect of proficiency and accurateness to solve the mentioned fractional problem. en_US
dc.identifier.citation Kumar, Amit; Baleanu, Dumitru (2021). "An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel", Mathematical Methods in the Applied Sciences, Vol. 44, No. 7, pp. 5458-5474. en_US
dc.identifier.doi 10.1002/mma.7122
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.scopus 2-s2.0-85097897471
dc.identifier.uri https://doi.org/10.1002/mma.7122
dc.identifier.uri https://hdl.handle.net/20.500.12416/14442
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Mathematical Methods in the Applied Sciences
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Atangana&#8211 en_US
dc.subject Baleanu Derivative en_US
dc.subject Convergenve Analysis en_US
dc.subject Existence And Uniqueness en_US
dc.subject Fractional Klein&#8211 en_US
dc.subject Gordon Equation en_US
dc.subject Homotopy Analysis Transform Method en_US
dc.title An Analysis for Klein-Gordon Equation Using Fractional Derivative Having Mittag-Leffler Kernel en_US
dc.title An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Kumar, Amit/0000-0002-3775-7037
gdc.author.scopusid 57386079100
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.yokid 56389
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Kumar, Amit] Balarampur Colege, Dept Math, Balarampur 723143, W Bengal, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Eskisehir Yolu 29 Km,Yukariyurtcu Mahallesi Mimar, TR-06790 Etimesgut, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele Buchares, Romania en_US
gdc.description.endpage 5474 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 5458 en_US
gdc.description.volume 44 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3114256291
gdc.identifier.wos WOS:000600672900001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 3.0675418E-9
gdc.oaire.isgreen false
gdc.oaire.keywords convergenve analysis
gdc.oaire.keywords Initial value problems for second-order parabolic equations
gdc.oaire.keywords Atangana-Baleanu derivative
gdc.oaire.keywords homotopy analysis transform method
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.keywords Theoretical approximation in context of PDEs
gdc.oaire.keywords fractional Klein-Gordon equation
gdc.oaire.keywords existence and uniqueness
gdc.oaire.popularity 8.289213E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.14239051
gdc.openalex.normalizedpercentile 0.54
gdc.opencitations.count 7
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 11
gdc.publishedmonth 5
gdc.scopus.citedcount 11
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 4
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files