An Analysis for Klein-Gordon Equation Using Fractional Derivative Having Mittag-Leffler Kernel
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Kumar, Amit | |
| dc.date.accessioned | 2022-03-11T13:52:30Z | |
| dc.date.accessioned | 2025-09-18T15:44:53Z | |
| dc.date.available | 2022-03-11T13:52:30Z | |
| dc.date.available | 2025-09-18T15:44:53Z | |
| dc.date.issued | 2021 | |
| dc.description | Kumar, Amit/0000-0002-3775-7037 | en_US |
| dc.description.abstract | Within this paper, we present an analysis of the fractional model of the Klein-Gordon (K-G) equation. K-G equation is considered as one of the significant equations in mathematical physics that describe the interaction of soliton in a collision less plasma. In a novel aspect of this work, we have used the latest form of fractional derivative (FCs), which contains the Mittag-Leffler type of kernel. The homotopy analysis transform method (HATM) is being taken to solve the fractional model of the K-G equation. A convergence study of HATM has been studied. The existence and uniqueness of the solution for the fractional K-G equation are presented. For verifying the obtained numerical outcomes regarding accuracy and competency, we have given different graphical presentations. Figures are reflecting that a novel form of the technique is a good organization in respect of proficiency and accurateness to solve the mentioned fractional problem. | en_US |
| dc.identifier.citation | Kumar, Amit; Baleanu, Dumitru (2021). "An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel", Mathematical Methods in the Applied Sciences, Vol. 44, No. 7, pp. 5458-5474. | en_US |
| dc.identifier.doi | 10.1002/mma.7122 | |
| dc.identifier.issn | 0170-4214 | |
| dc.identifier.issn | 1099-1476 | |
| dc.identifier.scopus | 2-s2.0-85097897471 | |
| dc.identifier.uri | https://doi.org/10.1002/mma.7122 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14442 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley | en_US |
| dc.relation.ispartof | Mathematical Methods in the Applied Sciences | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Atangana– | en_US |
| dc.subject | Baleanu Derivative | en_US |
| dc.subject | Convergenve Analysis | en_US |
| dc.subject | Existence And Uniqueness | en_US |
| dc.subject | Fractional Klein– | en_US |
| dc.subject | Gordon Equation | en_US |
| dc.subject | Homotopy Analysis Transform Method | en_US |
| dc.title | An Analysis for Klein-Gordon Equation Using Fractional Derivative Having Mittag-Leffler Kernel | en_US |
| dc.title | An analysis for Klein-Gordon equation using fractional derivative having Mittag-Leffler-type kernel | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Kumar, Amit/0000-0002-3775-7037 | |
| gdc.author.scopusid | 57386079100 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Kumar, Amit] Balarampur Colege, Dept Math, Balarampur 723143, W Bengal, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Eskisehir Yolu 29 Km,Yukariyurtcu Mahallesi Mimar, TR-06790 Etimesgut, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele Buchares, Romania | en_US |
| gdc.description.endpage | 5474 | en_US |
| gdc.description.issue | 7 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 5458 | en_US |
| gdc.description.volume | 44 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3114256291 | |
| gdc.identifier.wos | WOS:000600672900001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 3.0675418E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | convergenve analysis | |
| gdc.oaire.keywords | Initial value problems for second-order parabolic equations | |
| gdc.oaire.keywords | Atangana-Baleanu derivative | |
| gdc.oaire.keywords | homotopy analysis transform method | |
| gdc.oaire.keywords | Fractional partial differential equations | |
| gdc.oaire.keywords | Theoretical approximation in context of PDEs | |
| gdc.oaire.keywords | fractional Klein-Gordon equation | |
| gdc.oaire.keywords | existence and uniqueness | |
| gdc.oaire.popularity | 8.289213E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.14239051 | |
| gdc.openalex.normalizedpercentile | 0.54 | |
| gdc.opencitations.count | 7 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 11 | |
| gdc.publishedmonth | 5 | |
| gdc.scopus.citedcount | 11 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 4 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
