Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Chebyshev Cardinal Functions for a New Class of Nonlinear Optimal Control Problems With Dynamical Systems of Weakly Singular Variable-Order Fractional Integral Equations

dc.contributor.author Mahmoudi, Mohammad Reza
dc.contributor.author Avazzadeh, Zakieh
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Heydari, Mohammad Hossein
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2020-05-18T08:23:09Z
dc.date.accessioned 2025-09-18T14:09:49Z
dc.date.available 2020-05-18T08:23:09Z
dc.date.available 2025-09-18T14:09:49Z
dc.date.issued 2020
dc.description Heydari, Mohammad Hossein/0000-0001-6764-4394; Avazzadeh, Zakieh/0000-0003-2257-1798 en_US
dc.description.abstract The main objectives of this study are to introduce a new class of optimal control problems governed by a dynamical system of weakly singular variable-order fractional integral equations and to establish a computational method by utilizing the Chebyshev cardinal functions for their numerical solutions. In this way, a new operational matrix of variable-order fractional integration is generated for the Chebyshev cardinal functions. In the established method, first the control and state variables are approximated by the introduced basis functions. Then, the interpolation property of these basis functions together with their mentioned operational matrix is applied to derive an algebraic equation instead of the objective function and an algebraic system of equations instead of the dynamical system. Eventually, the constrained extrema technique is applied by adjoining the constraints generated from the dynamical system to the objective function using a set of Lagrange multipliers. The accuracy of the established approach is examined through several test problems. The obtained results confirm the high accuracy of the presented method. en_US
dc.description.publishedMonth 5
dc.identifier.citation Heydari, M.H...et al. (2020). "Chebyshev Cardinal Functions for A New Class of Nonlinear Optimal Control Problems With Dynamical Systems of Weakly Singular Variable-Order Fractional Integral Equations",Jvc/Journal of Vibration and Control, Vol. 26, No. 9, pp. 713-723. en_US
dc.identifier.doi 10.1177/1077546319889862
dc.identifier.issn 1077-5463
dc.identifier.issn 1741-2986
dc.identifier.scopus 2-s2.0-85077579878
dc.identifier.uri https://doi.org/10.1177/1077546319889862
dc.identifier.uri https://hdl.handle.net/20.500.12416/13496
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Optimal Control Problems en_US
dc.subject Variable-Order Fractional Calculus en_US
dc.subject Weakly Singular Variable-Order Fractional Dynamical System en_US
dc.subject Chebyshev Cardinal Functions en_US
dc.subject Operational Matrix en_US
dc.title Chebyshev Cardinal Functions for a New Class of Nonlinear Optimal Control Problems With Dynamical Systems of Weakly Singular Variable-Order Fractional Integral Equations en_US
dc.title Chebyshev Cardinal Functions for A New Class of Nonlinear Optimal Control Problems With Dynamical Systems of Weakly Singular Variable-Order Fractional Integral Equations tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Heydari, Mohammad Hossein/0000-0001-6764-4394
gdc.author.id Avazzadeh, Zakieh/0000-0003-2257-1798
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57209064354
gdc.author.scopusid 56684432000
gdc.author.scopusid 36660574600
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Mahmoudi, Mohammad Reza/Aax-4890-2020
gdc.author.wosid Heydari, Mohammad/Aab-7776-2022
gdc.author.wosid Avazzadeh, Zakieh/Gpw-6384-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Heydari, Mohammad Hossein] Shiraz Univ Technol, Dept Math, Shiraz, Iran; [Mahmoudi, Mohammad Reza] Fasa Univ, Fac Sci, Dept Stat, Fasa, Iran; [Mahmoudi, Mohammad Reza] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam; [Avazzadeh, Zakieh] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Fac Art & Sci, Dept Math, Etimesgut, Turkey en_US
gdc.description.endpage 723 en_US
gdc.description.issue 9-10 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 713 en_US
gdc.description.volume 26 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2999113209
gdc.identifier.wos WOS:000507743700001
gdc.openalex.fwci 0.17798814
gdc.openalex.normalizedpercentile 0.55
gdc.opencitations.count 6
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 6
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files