Gan-Based Novel Approach for Generating Synthetic Medical Tabular Data
dc.authorid | Mirzaxalilov, Sanjar/0000-0002-3642-8813 | |
dc.authorid | Nasimova, Nigorakhon/0009-0001-3308-6600 | |
dc.authorid | Cho, Young Im/0000-0003-0184-7599 | |
dc.authorscopusid | 57216775553 | |
dc.authorscopusid | 57222270026 | |
dc.authorscopusid | 57216775546 | |
dc.authorscopusid | 24333488200 | |
dc.authorscopusid | 57200201412 | |
dc.authorscopusid | 57194333152 | |
dc.authorscopusid | 57194333152 | |
dc.authorwosid | Nasimov, Rashid/Hhy-8649-2022 | |
dc.authorwosid | Abdusalomov, Akmalbek/Aeb-6319-2022 | |
dc.authorwosid | Mirzaxalilov, Sanjar/Hhz-2634-2022 | |
dc.contributor.author | Nasimov, Rashid | |
dc.contributor.author | Nasimova, Nigorakhon | |
dc.contributor.author | Mirzakhalilov, Sanjar | |
dc.contributor.author | Tokdemir, Gul | |
dc.contributor.author | Rizwan, Mohammad | |
dc.contributor.author | Abdusalomov, Akmalbek | |
dc.contributor.author | Cho, Young-Im | |
dc.date.accessioned | 2025-05-11T17:03:32Z | |
dc.date.available | 2025-05-11T17:03:32Z | |
dc.date.issued | 2024 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Nasimov, Rashid] Tashkent State Univ Econ, Artificial Intelligence, Tashkent 100066, Uzbekistan; [Nasimova, Nigorakhon; Mirzakhalilov, Sanjar; Abdusalomov, Akmalbek] Tashkent Univ Informat Technol, Dept Software Informat Technol, Tashkent 100200, Uzbekistan; [Tokdemir, Gul] Cankaya Univ, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkiye; [Rizwan, Mohammad] Delhi Technol Univ, Ctr Excellence Elect Vehicle & Related Technol, Dept Elect Engn, Delhi 110042, India; [Abdusalomov, Akmalbek; Cho, Young-Im] Gachon Univ, Dept Comp Engn, Seongnam Si 461701, Gyeonggi do, South Korea | en_US |
dc.description | Mirzaxalilov, Sanjar/0000-0002-3642-8813; Nasimova, Nigorakhon/0009-0001-3308-6600; Cho, Young Im/0000-0003-0184-7599 | en_US |
dc.description.abstract | The generation of synthetic medical data has become a focal point for researchers, driven by the increasing demand for privacy-preserving solutions. While existing generative methods heavily rely on real datasets for training, access to such data is often restricted. In contrast, statistical information about these datasets is more readily available, yet current methods struggle to generate tabular data solely from statistical inputs. This study addresses the gaps by introducing a novel approach that converts statistical data into tabular datasets using a modified Generative Adversarial Network (GAN) architecture. A custom loss function was incorporated into the training process to enhance the quality of the generated data. The proposed method is evaluated using fidelity and utility metrics, achieving "Good" similarity and "Excellent" utility scores. While the generated data may not fully replace real databases, it demonstrates satisfactory performance for training machine-learning algorithms. This work provides a promising solution for synthetic data generation when real datasets are inaccessible, with potential applications in medical data privacy and beyond. | en_US |
dc.description.sponsorship | Korea Institute of Marine Science & Technology Promotion (KIMST) [G22202202102401]; Korea Institute of Marine Science & Technology Promotion (KIMST) - Ministry of Oceans and Fisheries [1415181638]; Korean Agency for Technology | en_US |
dc.description.sponsorship | This paper is supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (G22202202102401), and by Korean Agency for Technology and Standard under Ministry of Trade, Industry and Energy in 2023, project number is 1415181638 ("Establishment of standardization basis for BCI and AI Interoperability"). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.3390/bioengineering11121288 | |
dc.identifier.issn | 2306-5354 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.pmid | 39768106 | |
dc.identifier.scopus | 2-s2.0-85213247113 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.3390/bioengineering11121288 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9605 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wos | WOS:001386925700001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 2 | |
dc.subject | Gan | en_US |
dc.subject | Synthetic Medical Tabular Data | en_US |
dc.subject | Statistical Data | en_US |
dc.subject | Custom Loss Function | en_US |
dc.title | Gan-Based Novel Approach for Generating Synthetic Medical Tabular Data | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 2 | |
dspace.entity.type | Publication |