Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Gan-Based Novel Approach for Generating Synthetic Medical Tabular Data

dc.authorid Mirzaxalilov, Sanjar/0000-0002-3642-8813
dc.authorid Nasimova, Nigorakhon/0009-0001-3308-6600
dc.authorid Cho, Young Im/0000-0003-0184-7599
dc.authorscopusid 57216775553
dc.authorscopusid 57222270026
dc.authorscopusid 57216775546
dc.authorscopusid 24333488200
dc.authorscopusid 57200201412
dc.authorscopusid 57194333152
dc.authorscopusid 57194333152
dc.authorwosid Nasimov, Rashid/Hhy-8649-2022
dc.authorwosid Abdusalomov, Akmalbek/Aeb-6319-2022
dc.authorwosid Mirzaxalilov, Sanjar/Hhz-2634-2022
dc.contributor.author Nasimov, Rashid
dc.contributor.author Nasimova, Nigorakhon
dc.contributor.author Mirzakhalilov, Sanjar
dc.contributor.author Tokdemir, Gul
dc.contributor.author Rizwan, Mohammad
dc.contributor.author Abdusalomov, Akmalbek
dc.contributor.author Cho, Young-Im
dc.date.accessioned 2025-05-11T17:03:32Z
dc.date.available 2025-05-11T17:03:32Z
dc.date.issued 2024
dc.department Çankaya University en_US
dc.department-temp [Nasimov, Rashid] Tashkent State Univ Econ, Artificial Intelligence, Tashkent 100066, Uzbekistan; [Nasimova, Nigorakhon; Mirzakhalilov, Sanjar; Abdusalomov, Akmalbek] Tashkent Univ Informat Technol, Dept Software Informat Technol, Tashkent 100200, Uzbekistan; [Tokdemir, Gul] Cankaya Univ, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkiye; [Rizwan, Mohammad] Delhi Technol Univ, Ctr Excellence Elect Vehicle & Related Technol, Dept Elect Engn, Delhi 110042, India; [Abdusalomov, Akmalbek; Cho, Young-Im] Gachon Univ, Dept Comp Engn, Seongnam Si 461701, Gyeonggi do, South Korea en_US
dc.description Mirzaxalilov, Sanjar/0000-0002-3642-8813; Nasimova, Nigorakhon/0009-0001-3308-6600; Cho, Young Im/0000-0003-0184-7599 en_US
dc.description.abstract The generation of synthetic medical data has become a focal point for researchers, driven by the increasing demand for privacy-preserving solutions. While existing generative methods heavily rely on real datasets for training, access to such data is often restricted. In contrast, statistical information about these datasets is more readily available, yet current methods struggle to generate tabular data solely from statistical inputs. This study addresses the gaps by introducing a novel approach that converts statistical data into tabular datasets using a modified Generative Adversarial Network (GAN) architecture. A custom loss function was incorporated into the training process to enhance the quality of the generated data. The proposed method is evaluated using fidelity and utility metrics, achieving "Good" similarity and "Excellent" utility scores. While the generated data may not fully replace real databases, it demonstrates satisfactory performance for training machine-learning algorithms. This work provides a promising solution for synthetic data generation when real datasets are inaccessible, with potential applications in medical data privacy and beyond. en_US
dc.description.sponsorship Korea Institute of Marine Science & Technology Promotion (KIMST) [G22202202102401]; Korea Institute of Marine Science & Technology Promotion (KIMST) - Ministry of Oceans and Fisheries [1415181638]; Korean Agency for Technology en_US
dc.description.sponsorship This paper is supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (G22202202102401), and by Korean Agency for Technology and Standard under Ministry of Trade, Industry and Energy in 2023, project number is 1415181638 ("Establishment of standardization basis for BCI and AI Interoperability"). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3390/bioengineering11121288
dc.identifier.issn 2306-5354
dc.identifier.issue 12 en_US
dc.identifier.pmid 39768106
dc.identifier.scopus 2-s2.0-85213247113
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.3390/bioengineering11121288
dc.identifier.uri https://hdl.handle.net/20.500.12416/9605
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:001386925700001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Gan en_US
dc.subject Synthetic Medical Tabular Data en_US
dc.subject Statistical Data en_US
dc.subject Custom Loss Function en_US
dc.title Gan-Based Novel Approach for Generating Synthetic Medical Tabular Data en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication

Files