Ulam-Hyers Stability for Tripled System of Weighted Fractional Operator With Time Delay
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Almalahi, Mohammed A. | |
| dc.contributor.author | Panchal, Satish K. | |
| dc.date.accessioned | 2023-02-10T11:28:47Z | |
| dc.date.accessioned | 2025-09-18T12:05:41Z | |
| dc.date.available | 2023-02-10T11:28:47Z | |
| dc.date.available | 2025-09-18T12:05:41Z | |
| dc.date.issued | 2021 | |
| dc.description | Almalahi, Mohammed. A./0000-0001-5719-086X; Abdeljawad, Thabet/0000-0002-8889-3768 | en_US |
| dc.description.abstract | This study is aimed to investigate the sufficient conditions of the existence of unique solutions and the Ulam-Hyers-Mittag-Leffler (UHML) stability for a tripled system of weighted generalized Caputo fractional derivatives investigated by Jarad et al. (Fractals 28:2040011 2020) in the frame of Chebyshev and Bielecki norms with time delay. The acquired results are obtained by using Banach fixed point theorems and the Picard operator (PO) method. Finally, a pertinent example of the results obtained is demonstrated. | en_US |
| dc.identifier.citation | Almalahi, Mohammed A...et al. (2021). "Ulam–Hyers–Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay", Advances in Difference Equations, Vol. 2021, No. 1. | en_US |
| dc.identifier.doi | 10.1186/s13662-021-03455-0 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85108118015 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-021-03455-0 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/10686 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Advances in Difference Equations | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Differential Equation | en_US |
| dc.subject | Weighted Caputo Operator | en_US |
| dc.subject | Fixed Point Theorem | en_US |
| dc.title | Ulam-Hyers Stability for Tripled System of Weighted Fractional Operator With Time Delay | en_US |
| dc.title | Ulam–Hyers–Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Almalahi, Mohammed. A./0000-0001-5719-086X | |
| gdc.author.id | Abdeljawad, Thabet/0000-0002-8889-3768 | |
| gdc.author.scopusid | 57214673479 | |
| gdc.author.scopusid | 57195535811 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.scopusid | 6508051762 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.author.wosid | Almalahi, Mohammed/Abd-5672-2021 | |
| gdc.author.wosid | Abdeljawad, Thabet/T-8298-2018 | |
| gdc.author.yokid | 234808 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Almalahi, Mohammed A.; Panchal, Satish K.] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431001, MS, India; [Almalahi, Mohammed A.] Hajjah Univ, Dept Math, Hajjah, Yemen; [Jarad, Fahd] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Jarad, Fahd; Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh, Saudi Arabia; [Abdeljawad, Thabet] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.volume | 2021 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3172258765 | |
| gdc.identifier.wos | WOS:000664631800002 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 8.0 | |
| gdc.oaire.influence | 3.0410743E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Operator (biology) | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Biochemistry | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Banach fixed-point theorem | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Chebyshev filter | |
| gdc.oaire.keywords | Fixed-point theorem | |
| gdc.oaire.keywords | Stability (learning theory) | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Mittag-Leffler function | |
| gdc.oaire.keywords | Weighted Caputo operator | |
| gdc.oaire.keywords | Banach space | |
| gdc.oaire.keywords | Fixed point theorem | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Fixed point | |
| gdc.oaire.keywords | Stability of Functional Equations in Mathematical Analysis | |
| gdc.oaire.keywords | Hyers-Ulam Stability | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Fractional differential equation | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Telecommunications | |
| gdc.oaire.keywords | Repressor | |
| gdc.oaire.keywords | Transcription factor | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Frame (networking) | |
| gdc.oaire.keywords | fixed point theorem | |
| gdc.oaire.keywords | Fractional ordinary differential equations | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | fractional differential equation | |
| gdc.oaire.keywords | Applications of operator theory to differential and integral equations | |
| gdc.oaire.keywords | weighted Caputo operator | |
| gdc.oaire.popularity | 1.0298722E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0103 physical sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.72693801 | |
| gdc.openalex.normalizedpercentile | 0.68 | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 4 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 11 | |
| gdc.publishedmonth | 12 | |
| gdc.scopus.citedcount | 11 | |
| gdc.virtual.author | Jarad, Fahd | |
| gdc.virtual.author | Abdeljawad, Thabet | |
| gdc.wos.citedcount | 12 | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
