Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems
| dc.contributor.author | Bhrawy, A. H. | |
| dc.contributor.author | Taha, T. M. | |
| dc.contributor.author | Baleanu, D. | |
| dc.date.accessioned | 2020-04-03T19:32:49Z | |
| dc.date.accessioned | 2025-09-18T13:26:27Z | |
| dc.date.available | 2020-04-03T19:32:49Z | |
| dc.date.available | 2025-09-18T13:26:27Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | We present a direct solution technique for approximating linear multiterm fractional differential equations (FDEs) on semi-infinite interval, using generalized Laguerre polynomials. We derive the operational matrix of Caputo fractional derivative of the generalized Laguerre polynomials which is applied together with generalized Laguerre tau approximation for implementing a spectral solution of linear multitermFDEs on semi-infinite interval subject to initial conditions. The generalized Laguerre pseudo-spectral approximation based on the generalized Laguerre operational matrix is investigated to reduce the nonlinear multiterm FDEs and its initial conditions to nonlinear algebraic system, thus greatly simplifying the problem. Through several numerical examples, we confirm the accuracy and performance of the proposed spectral algorithms. Indeed, the methods yield accurate results, and the exact solutions are achieved for some tested problems. | en_US |
| dc.identifier.citation | Baleanu, D.; Bhrawy, A. H.; Taha, T. M. "Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems", Abstract and Applied Analysis, (2013) | en_US |
| dc.identifier.doi | 10.1155/2013/546502 | |
| dc.identifier.issn | 1085-3375 | |
| dc.identifier.issn | 1687-0409 | |
| dc.identifier.scopus | 2-s2.0-84880177806 | |
| dc.identifier.uri | https://doi.org/10.1155/2013/546502 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/12616 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.relation.ispartof | Abstract and Applied Analysis | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems | en_US |
| dc.title | Two Efficient Generalized Laguerre Spectral Algorithms for Fractional Initial Value Problems | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 14319102000 | |
| gdc.author.scopusid | 55579185500 | |
| gdc.author.wosid | Bhrawy, Ali/D-4745-2012 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06810 Ankara, Turkey; [Baleanu, D.] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Bhrawy, A. H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, A. H.; Taha, T. M.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt | en_US |
| gdc.description.endpage | 10 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 2013 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.identifier.openalex | W2138671184 | |
| gdc.identifier.wos | WOS:000320802800001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 32.0 | |
| gdc.oaire.influence | 5.06321E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Composite material | |
| gdc.oaire.keywords | Interval (graph theory) | |
| gdc.oaire.keywords | Fractional Differential Equations | |
| gdc.oaire.keywords | Orthogonal polynomials | |
| gdc.oaire.keywords | Matrix (chemical analysis) | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Quantum mechanics | |
| gdc.oaire.keywords | Convergence Analysis of Iterative Methods for Nonlinear Equations | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Laguerre polynomials | |
| gdc.oaire.keywords | Functional Differential Equations | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Physics | |
| gdc.oaire.keywords | Classical orthogonal polynomials | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Optics | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Dispersion (optics) | |
| gdc.oaire.keywords | Materials science | |
| gdc.oaire.keywords | Laguerre's method | |
| gdc.oaire.keywords | Fractional Derivatives | |
| gdc.oaire.keywords | Semilinear Differential Equations | |
| gdc.oaire.keywords | Initial value problem | |
| gdc.oaire.keywords | Combinatorics | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Nonlinear system | |
| gdc.oaire.keywords | Fractional Calculus | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Algebraic equation | |
| gdc.oaire.keywords | Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations | |
| gdc.oaire.keywords | Fractional ordinary differential equations | |
| gdc.oaire.keywords | Theoretical approximation of solutions to ordinary differential equations | |
| gdc.oaire.popularity | 5.9886474E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 14.81792018 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 40 | |
| gdc.plumx.crossrefcites | 33 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 66 | |
| gdc.scopus.citedcount | 66 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 51 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
