Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Machine Learning-Based Silence Detection in Call Center Telephone Conversations

dc.contributor.author Iheme, Leonardo O.
dc.contributor.author Ozan, Sukru
dc.contributor.author Akagunduz, Erdem
dc.contributor.authorID 233834 tr_TR
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-12-01T07:48:51Z
dc.date.accessioned 2025-09-18T14:09:48Z
dc.date.available 2020-12-01T07:48:51Z
dc.date.available 2025-09-18T14:09:48Z
dc.date.issued 2019
dc.description Iheme, Leonardo/0000-0002-1136-3961 en_US
dc.description.abstract This study presents the development of a voice activity detection (VAD) system tested on call center telephony data obtained from our local site. The concept of bag of audio words (BoAW) combined with a naive Bayes classifier was applied to achieve the task. It was formulated as a binary classification problem with speech as the positive class and silence/background noise as the negative class. All the processing was performed on the Mel-frequency cepstral coefficients (MFCCs) extracted from the audio recordings. The results which are presented as accuracy score and receiver operating characteristics (ROC) indicate an excellent performance of the developed model. The system is to be deployed within our call center to aid data analysis and improve overall efficiency of the center. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAK, (7170694, TEYDEB 1507) en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey [TEYDEB 1507, 7170694] en_US
dc.description.sponsorship This study is supported by the Scientific and Technological Research Council of Turkey under the grant TEYDEB 1507, project number 7170694. en_US
dc.identifier.citation Akagündüz, Erdem. "Machine Learning-based Silence Detection in Call Center Telephone Conversations", 2019 International Conference on Artificial Intelligence and Data Processing (IDAP), 2019. en_US
dc.identifier.doi 10.1109/idap.2019.8875958
dc.identifier.isbn 9781728129327
dc.identifier.scopus 2-s2.0-85074878862
dc.identifier.uri https://doi.org/10.1109/idap.2019.8875958
dc.identifier.uri https://hdl.handle.net/20.500.12416/13489
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof International Conference on Artificial Intelligence and Data Processing (IDAP) -- SEP 21-22, 2019 -- Inonu Univ, Malatya, TURKEY en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Voice Activity Detection en_US
dc.subject Bag Of Audio Words en_US
dc.subject Mfcc en_US
dc.subject Clustering en_US
dc.subject Call Center en_US
dc.title Machine Learning-Based Silence Detection in Call Center Telephone Conversations en_US
dc.title Machine Learning-based Silence Detection in Call Center Telephone Conversations tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Iheme, Leonardo/0000-0002-1136-3961
gdc.author.scopusid 37035860200
gdc.author.scopusid 14056600700
gdc.author.scopusid 8331988500
gdc.author.wosid Iheme, Leonardo/Aae-2987-2022
gdc.author.wosid Akagündüz, Erdem/W-1788-2018
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Iheme, Leonardo O.; Ozan, Sukru] AdresGezgini Inc, Res & Dev Ctr, Izmir, Turkey; [Akagunduz, Erdem] Cankaya Univ, Elect & Elect Engn Dept, Ankara, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W2981570921
gdc.identifier.wos WOS:000591781100086
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.11
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files