Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks

dc.authorscopusid 55371892800
dc.authorscopusid 57193872973
dc.authorwosid Ayli, Ulku Ece/J-2906-2016
dc.authorwosid Kocak, Eyup/Hik-2192-2022
dc.contributor.author Ayli, Ece
dc.contributor.author Koçak, Eyup
dc.contributor.author Kocak, Eyup
dc.contributor.authorID 265836 tr_TR
dc.contributor.authorID 283455 tr_TR
dc.contributor.other Makine Mühendisliği
dc.date.accessioned 2024-05-08T08:25:24Z
dc.date.available 2024-05-08T08:25:24Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Ayli, Ece; Kocak, Eyup] Cankaya Univ, Dept Mech Engn, Ankara, Turkey en_US
dc.description.abstract A numerical study is undertaken to investigate the effect of twisted tape inserts on heat transfer. Twisted tapes with various aspect ratios and single, double, and triple inserts are placed inside a tube for Reynolds numbers ranging from 8000 to 12000. Numerical results show that the tube with a twisted tape and different numbers of tape is more effective than the smooth tube in terms of thermo-hydraulic performance. The highest heat transfer is achieved with the triple insert, with the highest turning number and an increment of 15 %. Then, an artificial neural network (ANN) model with a three-layer feedforward neural network is adopted to obtain the Nusselt number on the basis of four inputs for a heated tube with a twisted insert. Several configurations of the neural network are examined to optimize the number of neurons and to identify the most appropriate training algorithm. Finally, the best model is determined with one hidden layer and thirteen neurons in the layer. Bayesian regulation is chosen as the training algorithm. With the optimized algorithm, excellent precision for measuring the output is provided, with R2 = 0.97043. In addition, the optimized ANN architecture is applied to similar studies in the literature to predict the heat transfer performance of twisted tapes. The developed ANN architecture can predict the heat transfer enhancement performance of similar problems with R2 values higher than 0.93. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Aylı, Ece; Koçak, Eyup. (2022). "Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks", Journal of Mechanical Science and Technology, Vol.36, No.9, pp.4849-4858. en_US
dc.identifier.doi 10.1007/s12206-022-0843-x
dc.identifier.endpage 4858 en_US
dc.identifier.issn 1738-494X
dc.identifier.issn 1976-3824
dc.identifier.issue 9 en_US
dc.identifier.scopus 2-s2.0-85137438167
dc.identifier.scopusquality Q3
dc.identifier.startpage 4849 en_US
dc.identifier.uri https://doi.org/10.1007/s12206-022-0843-x
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:000849170000015
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Korean Soc Mechanical Engineers en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 6
dc.subject Ann en_US
dc.subject Cfd en_US
dc.subject Heat Transfer en_US
dc.subject Twisted Tape en_US
dc.title Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks tr_TR
dc.title Prediction of the Heat Transfer Performance of Twisted Tape Inserts by Using Artificial Neural Networks en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isAuthorOfPublication.latestForDiscovery 6ad744ba-3168-41f4-8cc1-ca6ed3c10eee
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: