Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Korean Soc Mechanical Engineers

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Makine Mühendisliği
Bölümümüzün amacı makine mühendisliğinde hem eğitim ve hem de araştırmada kalite, mükemmeliyet, inovasyon ve seçkinlikte ulusal ve uluslararası bir marka olarak tanınmayı; yakın gelecekte, tercih edilen bir ulusal makine mühendisliği programı olmayı; seçilmiş “teknoloji kanıtlama programları” ile öncü teknolojilerde sanayiye öncülük yapmaktır.

Journal Issue

Events

Abstract

A numerical study is undertaken to investigate the effect of twisted tape inserts on heat transfer. Twisted tapes with various aspect ratios and single, double, and triple inserts are placed inside a tube for Reynolds numbers ranging from 8000 to 12000. Numerical results show that the tube with a twisted tape and different numbers of tape is more effective than the smooth tube in terms of thermo-hydraulic performance. The highest heat transfer is achieved with the triple insert, with the highest turning number and an increment of 15 %. Then, an artificial neural network (ANN) model with a three-layer feedforward neural network is adopted to obtain the Nusselt number on the basis of four inputs for a heated tube with a twisted insert. Several configurations of the neural network are examined to optimize the number of neurons and to identify the most appropriate training algorithm. Finally, the best model is determined with one hidden layer and thirteen neurons in the layer. Bayesian regulation is chosen as the training algorithm. With the optimized algorithm, excellent precision for measuring the output is provided, with R2 = 0.97043. In addition, the optimized ANN architecture is applied to similar studies in the literature to predict the heat transfer performance of twisted tapes. The developed ANN architecture can predict the heat transfer enhancement performance of similar problems with R2 values higher than 0.93.

Description

Keywords

Ann, Cfd, Heat Transfer, Twisted Tape

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Aylı, Ece; Koçak, Eyup. (2022). "Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks", Journal of Mechanical Science and Technology, Vol.36, No.9, pp.4849-4858.

WoS Q

Q4

Scopus Q

Q3

Source

Volume

36

Issue

9

Start Page

4849

End Page

4858