Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Approximate Solution for a 2-D Fractional Differential Equation With Discrete Random Noise

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Tran Ngoc Thach
dc.contributor.author O'Regan, Donal
dc.contributor.author Nguyen Huu Can
dc.contributor.author Nguyen Huy Tuan
dc.date.accessioned 2020-05-15T12:04:30Z
dc.date.accessioned 2025-09-18T12:06:24Z
dc.date.available 2020-05-15T12:04:30Z
dc.date.available 2025-09-18T12:06:24Z
dc.date.issued 2020
dc.description Nguyen, Huu-Can/0000-0001-6198-1015; Nguyen Huy, Tuan/0000-0002-6962-1898 en_US
dc.description.abstract We study a boundary value problem for a 2-D fractional differential equation (FDE) with random noise. This problem is not well-posed. Hence, we use truncated regularization method to establish regularized solutions for the such problem. Finally, the convergence rate of this approximate solution and a numerical example are investigated. (C) 2020 Elsevier Ltd. All rights reserved. en_US
dc.description.sponsorship Vietnam National Foundation for Science and Technology Development (NAFOSTED) [101.02-2019.09] en_US
dc.description.sponsorship This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2019.09. en_US
dc.identifier.citation Tuan, N.H...et al. (2020). "Approximate Solution for A 2-D Fractional Differential Equation With Discrete Random Noise",Chaos, Solitons and Fractals, Vol. 133. en_US
dc.identifier.doi 10.1016/j.chaos.2020.109650
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-85078780812
dc.identifier.uri https://doi.org/10.1016/j.chaos.2020.109650
dc.identifier.uri https://hdl.handle.net/20.500.12416/10891
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Chaos, Solitons & Fractals
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional Differential Equation en_US
dc.subject Regularization en_US
dc.subject Random Noise en_US
dc.title Approximate Solution for a 2-D Fractional Differential Equation With Discrete Random Noise en_US
dc.title Approximate Solution for A 2-D Fractional Differential Equation With Discrete Random Noise tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Nguyen, Huu-Can/0000-0001-6198-1015
gdc.author.id Nguyen Huy, Tuan/0000-0002-6962-1898
gdc.author.scopusid 17347203900
gdc.author.scopusid 7005872966
gdc.author.scopusid 57204430456
gdc.author.scopusid 36049459000
gdc.author.scopusid 57216298181
gdc.author.wosid Tran, Thach/E-6127-2019
gdc.author.wosid O'Regan, Donal/I-3184-2015
gdc.author.wosid Nguyen, Tuan/E-3617-2019
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Nguyen, Huu-Can/R-4820-2018
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nguyen Huy Tuan] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Tran Ngoc Thach] Univ Sci, Dept Math & Comp Sci, Ho Chi Minh City, Vietnam; [Tran Ngoc Thach] Vietnam Natl Univ, Ho Chi Minh City, Vietnam; [O'Regan, Donal] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland; [Nguyen Huu Can] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 109650
gdc.description.volume 133 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3004538847
gdc.identifier.wos WOS:000520892300007
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 3.0743021E-9
gdc.oaire.isgreen false
gdc.oaire.keywords regularization
gdc.oaire.keywords random noise
gdc.oaire.keywords Stochastic partial differential equations (aspects of stochastic analysis)
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords fractional differential equation
gdc.oaire.keywords PDEs with randomness, stochastic partial differential equations
gdc.oaire.keywords Fractional partial differential equations
gdc.oaire.popularity 9.177371E-9
gdc.oaire.publicfunded true
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 0.42717154
gdc.openalex.normalizedpercentile 0.69
gdc.opencitations.count 12
gdc.plumx.crossrefcites 12
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 15
gdc.publishedmonth 4
gdc.scopus.citedcount 15
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 14
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files