Revisiting Generalized Caputo Derivatives in the Context of Two-Point Boundary Value Problems With the P-Laplacian Operator at Resonance
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Bouloudene, Mokhtar | |
| dc.contributor.author | Panda, Sumati Kumari | |
| dc.contributor.author | Adjabi, Yassine | |
| dc.date.accessioned | 2024-01-23T13:34:03Z | |
| dc.date.accessioned | 2025-09-18T15:44:29Z | |
| dc.date.available | 2024-01-23T13:34:03Z | |
| dc.date.available | 2025-09-18T15:44:29Z | |
| dc.date.issued | 2023 | |
| dc.description | Panda, Sumati Kumari/0000-0002-0220-8222 | en_US |
| dc.description.abstract | The novelty of this paper is that, based on Mawhin's continuation theorem, we present some sufficient conditions that ensure that there is at least one solution to a particular kind of a boundary value problem with the p-Laplacian and generalized fractional Caputo derivative. | en_US |
| dc.identifier.citation | Adjabi, Yassine;...et.al. (2023). "Revisiting generalized Caputo derivatives in the context of two-point boundary value problems with the p-Laplacian operator at resonance", Boundary Value Problems, Vol.2023, No.1. | en_US |
| dc.identifier.doi | 10.1186/s13661-023-01751-0 | |
| dc.identifier.issn | 1687-2770 | |
| dc.identifier.scopus | 2-s2.0-85162041257 | |
| dc.identifier.uri | https://doi.org/10.1186/s13661-023-01751-0 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14309 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Boundary Value Problems | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Two-Point Boundary Value Problem | en_US |
| dc.subject | Generalized Caputo Derivative | en_US |
| dc.subject | P-Laplacian | en_US |
| dc.subject | Resonance | en_US |
| dc.subject | Coincidence Degree | en_US |
| dc.subject | Mawhin'S Continuation Theorem | en_US |
| dc.title | Revisiting Generalized Caputo Derivatives in the Context of Two-Point Boundary Value Problems With the P-Laplacian Operator at Resonance | en_US |
| dc.title | Revisiting generalized Caputo derivatives in the context of two-point boundary value problems with the p-Laplacian operator at resonance | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Panda, Sumati Kumari/0000-0002-0220-8222 | |
| gdc.author.scopusid | 25929845700 | |
| gdc.author.scopusid | 15622742900 | |
| gdc.author.scopusid | 57226721736 | |
| gdc.author.scopusid | 56397795700 | |
| gdc.author.wosid | Jarad, Fahd/T-8333-2018 | |
| gdc.author.wosid | Panda, Sumati Kumari/D-9973-2016 | |
| gdc.author.yokid | 234808 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | true | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Adjabi, Yassine; Bouloudene, Mokhtar] Univ Mhamed Bougara, Fac Sci, Dept Math, Boumerdes, Algeria; [Adjabi, Yassine] USTHB, Fac Math, Dynam Syst Lab, Bab Ezzouar, Algeria; [Jarad, Fahd] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06790 Ankara, Turkiye; [Jarad, Fahd] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Bouloudene, Mokhtar] Univ MHamed Bougara, Dynam Engines & Vibroacoust Lab, Boumerdes, Algeria; [Panda, Sumati Kumari] GMR Inst Technol, Dept Math, Rajam 532127, India | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 2023 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4380995695 | |
| gdc.identifier.wos | WOS:001006548300001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Operator (biology) | |
| gdc.oaire.keywords | Resonance | |
| gdc.oaire.keywords | Theory and Applications of Fractional Differential Equations | |
| gdc.oaire.keywords | Mathematical analysis | |
| gdc.oaire.keywords | Biochemistry | |
| gdc.oaire.keywords | Gene | |
| gdc.oaire.keywords | Context (archaeology) | |
| gdc.oaire.keywords | Differential equation | |
| gdc.oaire.keywords | Numerical Methods for Singularly Perturbed Problems | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Boundary value problem | |
| gdc.oaire.keywords | Biology | |
| gdc.oaire.keywords | Anomalous Diffusion Modeling and Analysis | |
| gdc.oaire.keywords | Two-point boundary value problem | |
| gdc.oaire.keywords | QA299.6-433 | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | p-Laplacian | |
| gdc.oaire.keywords | Generalized Caputo derivative | |
| gdc.oaire.keywords | Mawhin’s continuation theorem | |
| gdc.oaire.keywords | Fractional calculus | |
| gdc.oaire.keywords | Pure mathematics | |
| gdc.oaire.keywords | Coincidence degree | |
| gdc.oaire.keywords | Continuation | |
| gdc.oaire.keywords | Paleontology | |
| gdc.oaire.keywords | Partial differential equation | |
| gdc.oaire.keywords | Applied mathematics | |
| gdc.oaire.keywords | Partial derivative | |
| gdc.oaire.keywords | Computer science | |
| gdc.oaire.keywords | Programming language | |
| gdc.oaire.keywords | Chemistry | |
| gdc.oaire.keywords | Boundary Value Problems | |
| gdc.oaire.keywords | Laplace operator | |
| gdc.oaire.keywords | Modeling and Simulation | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Repressor | |
| gdc.oaire.keywords | Transcription factor | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Ordinary differential equation | |
| gdc.oaire.keywords | Nonlinear boundary value problems for ordinary differential equations | |
| gdc.oaire.keywords | generalized Caputo derivative | |
| gdc.oaire.keywords | two-point boundary value problem | |
| gdc.oaire.keywords | Fractional ordinary differential equations | |
| gdc.oaire.keywords | coincidence degree | |
| gdc.oaire.keywords | Fractional derivatives and integrals | |
| gdc.oaire.keywords | resonance | |
| gdc.oaire.keywords | Degree theory for nonlinear operators | |
| gdc.oaire.keywords | \(p\)-Laplacian | |
| gdc.oaire.keywords | Mawhin's continuation theorem | |
| gdc.oaire.popularity | 2.0536601E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.11 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | 12 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Jarad, Fahd | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
