On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu Derivative
| dc.contributor.author | Inc, Mustafa | |
| dc.contributor.author | Bayram, Mustafa | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Partohaghighi, Mohammad | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-11-10T10:47:51Z | |
| dc.date.accessioned | 2025-09-18T15:44:19Z | |
| dc.date.available | 2022-11-10T10:47:51Z | |
| dc.date.available | 2025-09-18T15:44:19Z | |
| dc.date.issued | 2019 | |
| dc.description | Bayram, Mustafa/0000-0002-2994-7201 | en_US |
| dc.description.abstract | A powerful algorithm is proposed to get the solutions of the time fractional Advection-Diffusion equation(TFADE): (ABC)D(0+)(,t)(beta)u(x, t) = zeta u(xx)(x, t) - kappa u(x)(x, t) + F(x, t), 0 < beta <= 1. The time-fractional derivative (ABC)D(0+)(,t)(beta)u(x, t) is described in the Atangana-Baleanu Caputo concept. The basis of our approach is transforming the original equation into a new equation by imposing a transformation involving a fictitious coordinate. Then, a geometric scheme namely the group preserving scheme (GPS) is implemented to solve the new equation by taking an initial guess. Moreover, in order to present the power of the presented approach some examples are solved, successfully. | en_US |
| dc.description.publishedMonth | 1 | |
| dc.identifier.citation | Partohaghighi, Mohammad...et al. (2020). "On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative", Open Physics, Vol. 17, No. 1, pp. 816-822. | en_US |
| dc.identifier.doi | 10.1515/phys-2019-0085 | |
| dc.identifier.issn | 2391-5471 | |
| dc.identifier.scopus | 2-s2.0-85078190757 | |
| dc.identifier.uri | https://doi.org/10.1515/phys-2019-0085 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14252 | |
| dc.language.iso | en | en_US |
| dc.publisher | Sciendo | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fictitious Time Integration Method | en_US |
| dc.subject | Group Preserving Scheme | en_US |
| dc.subject | Time Fractional Advection-Diffusion Equation | en_US |
| dc.subject | Atangana-Baleanu Caputo Derivative | en_US |
| dc.title | On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu Derivative | en_US |
| dc.title | On Numerical Solution of the Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Bayram, Mustafa/0000-0002-2994-7201 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57210557042 | |
| gdc.author.scopusid | 56051853500 | |
| gdc.author.scopusid | 7005821294 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Inc, Mustafa/C-4307-2018 | |
| gdc.author.wosid | Bayram, Mustafa/Jan-8668-2023 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ogretmenler Caddesi 14, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Partohaghighi, Mohammad] Univ Bonab, Dept Math, Bonab, Iran; [Inc, Mustafa] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey; [Bayram, Mustafa] Biruni Univ, Dept Comp Engn, Istanbul, Turkey | en_US |
| gdc.description.endpage | 822 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 816 | en_US |
| gdc.description.volume | 17 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W2999100579 | |
| gdc.identifier.wos | WOS:000513897100001 | |
| gdc.openalex.fwci | 1.8368984 | |
| gdc.openalex.normalizedpercentile | 0.85 | |
| gdc.opencitations.count | 14 | |
| gdc.plumx.crossrefcites | 4 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 15 | |
| gdc.scopus.citedcount | 15 | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |