Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Almost autonomous training of mixtures of principal component analyzers

dc.contributor.authorMusa, Mohamed E. M.
dc.contributor.authorRidder, Dick de
dc.contributor.authorDuin, Robert P. W.
dc.contributor.authorAtalay, Volkan
dc.date.accessioned2020-04-18T13:27:21Z
dc.date.available2020-04-18T13:27:21Z
dc.date.issued2004
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn recent years, a number of mixtures of local PCA models have been proposed. Most of these models require the user to set the number of submodels (local models) in the mixture and the dimensionality of the submodels (i.e., number of PC's) as well. To make the model free of these parameters, we propose a greedy expectation-maximization algorithm to find a suboptimal number of submodels. For a given retained variance ratio, the proposed algorithm estimates for each submodel the dimensionality that retains this given variability ratio. We test the proposed method on two different classification problems: handwritten digit recognition and 2-class ionosphere data classification. The results show that the proposed method has a good performance.en_US
dc.description.publishedMonth7
dc.identifier.citationMusa, MEM; de Ridder, D.; Duin, RPW; Atalay, V., "Almost autonomous training of mixtures of principal component analyzers" Pattern Recognition Letters, Vol.25, No.9, pp.1085-1095, (2004).en_US
dc.identifier.doi10.1016/j.patrec.2004.03.019
dc.identifier.endpage1095en_US
dc.identifier.issn0167-8655
dc.identifier.issue9en_US
dc.identifier.startpage1085en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/3334
dc.identifier.volume25en_US
dc.language.isoenen_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPCA Mixture Modelen_US
dc.subjectEM Algorithmen_US
dc.subjectRegularizationen_US
dc.titleAlmost autonomous training of mixtures of principal component analyzerstr_TR
dc.titleAlmost Autonomous Training of Mixtures of Principal Component Analyzersen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: