Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Lossy Compression of Hyperspectral Images Using Online Learning Based Sparse Coding

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

A lossy hyperspectral image compression method is proposed using online learning based sparse coding. The least number of coefficients are obtained to represent hyperspectral images by applying the sparse coding algorithm which is based on a dicriminative online dictionary learning method. Results indicate that a pre-analysis of the number of non-zero dictionary elements may help in improving the overall compression quality.

Description

Keywords

Sparse Coding, Hyperspectral Imagery, Anomaly Detection, Online Learning

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ulku, Irem; Toreyin, B. Ugur, "Lossy Compression of Hyperspectral Images Using Online Learning Based Sparse Coding", International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), (2014).

WoS Q

Scopus Q

Source

International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM)

Volume

Issue

Start Page

End Page