Lossy Compression of Hyperspectral Images Using Online Learning Based Sparse Coding
dc.contributor.author | Ülkü, İrem | |
dc.contributor.author | Töreyin, Behçet Uğur | |
dc.contributor.authorID | 17575 | tr_TR |
dc.date.accessioned | 2020-04-19T23:52:51Z | |
dc.date.available | 2020-04-19T23:52:51Z | |
dc.date.issued | 2014 | |
dc.department | Çankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | A lossy hyperspectral image compression method is proposed using online learning based sparse coding. The least number of coefficients are obtained to represent hyperspectral images by applying the sparse coding algorithm which is based on a dicriminative online dictionary learning method. Results indicate that a pre-analysis of the number of non-zero dictionary elements may help in improving the overall compression quality. | en_US |
dc.identifier.citation | Ulku, Irem; Toreyin, B. Ugur, "Lossy Compression of Hyperspectral Images Using Online Learning Based Sparse Coding", International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), (2014). | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/3378 | |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sparse Coding | en_US |
dc.subject | Hyperspectral Imagery | en_US |
dc.subject | Anomaly Detection | en_US |
dc.subject | Online Learning | en_US |
dc.title | Lossy Compression of Hyperspectral Images Using Online Learning Based Sparse Coding | tr_TR |
dc.title | Lossy Compression of Hyperspectral Images Using Online Learning Based Sparse Coding | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: