Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Prediction of the Onset of Shear Localization Based on Machine Learning

dc.contributor.author Ayli, Ece
dc.contributor.author Ulucak, Oguzhan
dc.contributor.author Ugurer, Doruk
dc.contributor.author Akar, Samet
dc.contributor.authorID 315516 tr_TR
dc.contributor.authorID 265836 tr_TR
dc.contributor.other 06.06. Makine Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-01-23T13:33:55Z
dc.date.accessioned 2025-09-18T12:47:37Z
dc.date.available 2024-01-23T13:33:55Z
dc.date.available 2025-09-18T12:47:37Z
dc.date.issued 2023
dc.description Akar, Samet/0000-0002-3202-1362; Ulucak, Oguzhan/0000-0002-2063-2553 en_US
dc.description.abstract Predicting the onset of shear localization is among the most challenging problems in machining. This phenomenon affects the process outputs, such as machining forces, surface quality, and machined part tolerances. To predict this phenomenon, analytical, experimental, and numerical methods (especially finite element analysis) are widely used. However, the limitations of each method hinder their industrial applications, demanding a reliable and time-saving approach to predict shear localization onset. Additionally, since this phenomenon largely depends on the type and parameters of the constitutive material model, any change in these parameters requires a new set of simulations, which puts further restrictions on the application of finite element modeling. This study aims to overcome the computational efficiency of the finite element method to predict the onset of shear localization when machining Ti6Al4V using machine learning methods. The obtained results demonstrate that the FCM (fuzzy c-means) clustering ANFIS (adaptive network-based fuzzy inference system) has given better results in both training and testing when it is compared to the ANN (artificial neural network) architecture with an R-2 of 0.9981. Regarding this, the FCM-ANFIS is a good candidate to calculate the critical cutting speed. To the best of the authors' knowledge, this is the first study in the literature that uses a machine learning tool to predict shear localization. en_US
dc.description.publishedMonth 6
dc.identifier.citation Akar,S.;...et.al. (2023). "Prediction of the onset of shear localization based on machine learning", Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, Vol.37. en_US
dc.identifier.doi 10.1017/S0890060423000136
dc.identifier.issn 0890-0604
dc.identifier.issn 1469-1760
dc.identifier.scopus 2-s2.0-85162137086
dc.identifier.uri https://doi.org/10.1017/S0890060423000136
dc.identifier.uri https://hdl.handle.net/123456789/11856
dc.language.iso en en_US
dc.publisher Cambridge Univ Press en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Anfis Exponential en_US
dc.subject Ann en_US
dc.subject Finite Element Method en_US
dc.subject Shear Localization en_US
dc.subject Ti6Al4V en_US
dc.title Prediction of the Onset of Shear Localization Based on Machine Learning en_US
dc.title Prediction of the onset of shear localization based on machine learning tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ulucak, Oguzhan/0000-0002-2063-2553
gdc.author.id Akar, Samet/0000-0002-3202-1362
gdc.author.institutional Aylı, Ülkü Ece
gdc.author.institutional Akar, Samet
gdc.author.scopusid 57481323900
gdc.author.scopusid 58317250900
gdc.author.scopusid 57220077206
gdc.author.scopusid 57222636605
gdc.author.wosid Akar, Samet/Hlx-2464-2023
gdc.author.wosid Ayli, Ulku Ece/J-2906-2016
gdc.author.wosid Akar, Samet/O-2762-2018
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Akar, Samet; Ayli, Ece] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye; [Ulucak, Oguzhan] TED Univ, Dept Mech Engn, Ankara, Turkiye; [Ugurer, Doruk] Atilim Univ, Dept Mech Engn, Ankara, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 37 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4379912874
gdc.identifier.wos WOS:001003007000001
gdc.openalex.fwci 0.36902224
gdc.openalex.normalizedpercentile 0.53
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isAuthorOfPublication d7306141-fd74-42cb-bf33-18b4eb7fb92e
relation.isAuthorOfPublication.latestForDiscovery cd99bba5-5182-4d17-b1b7-8f9b39a4c494
relation.isOrgUnitOfPublication b3982d12-14ba-4f93-ae05-1abca7e3e557
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery b3982d12-14ba-4f93-ae05-1abca7e3e557

Files