The Existence of Solutions for Some Fractional Finite Difference Equations Via Sum Boundary Conditions
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Rezapour, Shahram | |
| dc.contributor.author | Salehi, Saeid | |
| dc.contributor.author | Agarwal, Ravi P. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2020-04-29T22:49:38Z | |
| dc.date.accessioned | 2025-09-18T12:47:55Z | |
| dc.date.available | 2020-04-29T22:49:38Z | |
| dc.date.available | 2025-09-18T12:47:55Z | |
| dc.date.issued | 2014 | |
| dc.description.abstract | In this manuscript we investigate the existence of the fractional finite difference equation (FFDE) Delta(mu)(mu-2)x(t) = g(t + mu - 1, x(t + mu - 1), Delta x(t + mu - 1)) via the boundary condition x(mu - 2) = 0 and the sum boundary condition x(mu + b + 1) = Sigma(alpha)(k=mu-1) x(k) for order 1 < mu <= 2, where g : N-mu-1(mu+b+1) x R x R -> R, alpha is an element of N-mu-1(mu+b), and t is an element of N-0(b+2). Along the same lines, we discuss the existence of the solutions for the following FFDE: Delta(mu)(mu-3)x(t) = g(t + mu - 2, x(t + mu - 2)) via the boundary conditions x(mu - 3) = 0 and x(mu + b + 1) = 0 and the sum boundary condition x(alpha) = Sigma(beta)(k=gamma)x(k) for order 2 < mu <= 3, where g : N-mu-2(mu+b+1) x R -> R, b is an element of N-0, t is an element of N-0(b+3), and alpha, beta,gamma N-mu-2(mu+b) with gamma < beta < alpha. | en_US |
| dc.description.publishedMonth | 10 | |
| dc.description.sponsorship | Azarbaijan Shahid Madani University | en_US |
| dc.description.sponsorship | Research of the third and fourth authors was supported by Azarbaijan Shahid Madani University. | en_US |
| dc.identifier.doi | 10.1186/1687-1847-2014-282 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-84938307777 | |
| dc.identifier.uri | https://doi.org/10.1186/1687-1847-2014-282 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11932 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractional Finite Difference Equation | en_US |
| dc.subject | Fixed Point | en_US |
| dc.title | The Existence of Solutions for Some Fractional Finite Difference Equations Via Sum Boundary Conditions | en_US |
| dc.title | The Existence of Solutions For Some Fractional Finite Difference Equations Via Sum Boundary Conditions | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 36013313700 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 55935081600 | |
| gdc.author.scopusid | 56152553900 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Agarwal, Ravi/Aeq-9823-2022 | |
| gdc.author.wosid | Rezapour, Shahram/N-4883-2016 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Agarwal, Ravi P.] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA; [Agarwal, Ravi P.] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Rezapour, Shahram; Salehi, Saeid] Azarbaijan Shahid Madani Univ, Dept Math, Azarshahr, Tabriz, Iran | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2125502053 | |
| gdc.identifier.wos | WOS:000349785500004 | |
| gdc.openalex.fwci | 4.07784776 | |
| gdc.openalex.normalizedpercentile | 0.94 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 26 | |
| gdc.plumx.crossrefcites | 20 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 42 | |
| gdc.scopus.citedcount | 42 | |
| gdc.wos.citedcount | 38 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |