Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Existence of Solutions for Some Fractional Finite Difference Equations Via Sum Boundary Conditions

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rezapour, Shahram
dc.contributor.author Salehi, Saeid
dc.contributor.author Agarwal, Ravi P.
dc.date.accessioned 2020-04-29T22:49:38Z
dc.date.accessioned 2025-09-18T12:47:55Z
dc.date.available 2020-04-29T22:49:38Z
dc.date.available 2025-09-18T12:47:55Z
dc.date.issued 2014
dc.description.abstract In this manuscript we investigate the existence of the fractional finite difference equation (FFDE) Delta(mu)(mu-2)x(t) = g(t + mu - 1, x(t + mu - 1), Delta x(t + mu - 1)) via the boundary condition x(mu - 2) = 0 and the sum boundary condition x(mu + b + 1) = Sigma(alpha)(k=mu-1) x(k) for order 1 < mu <= 2, where g : N-mu-1(mu+b+1) x R x R -> R, alpha is an element of N-mu-1(mu+b), and t is an element of N-0(b+2). Along the same lines, we discuss the existence of the solutions for the following FFDE: Delta(mu)(mu-3)x(t) = g(t + mu - 2, x(t + mu - 2)) via the boundary conditions x(mu - 3) = 0 and x(mu + b + 1) = 0 and the sum boundary condition x(alpha) = Sigma(beta)(k=gamma)x(k) for order 2 < mu <= 3, where g : N-mu-2(mu+b+1) x R -> R, b is an element of N-0, t is an element of N-0(b+3), and alpha, beta,gamma N-mu-2(mu+b) with gamma < beta < alpha. en_US
dc.description.sponsorship Azarbaijan Shahid Madani University en_US
dc.description.sponsorship Research of the third and fourth authors was supported by Azarbaijan Shahid Madani University. en_US
dc.identifier.doi 10.1186/1687-1847-2014-282
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-84938307777
dc.identifier.uri https://doi.org/10.1186/1687-1847-2014-282
dc.identifier.uri https://hdl.handle.net/20.500.12416/11932
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Advances in Difference Equations
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Finite Difference Equation en_US
dc.subject Fixed Point en_US
dc.title The Existence of Solutions for Some Fractional Finite Difference Equations Via Sum Boundary Conditions en_US
dc.title The Existence of Solutions For Some Fractional Finite Difference Equations Via Sum Boundary Conditions tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36013313700
gdc.author.scopusid 7005872966
gdc.author.scopusid 55935081600
gdc.author.scopusid 56152553900
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Agarwal, Ravi/Aeq-9823-2022
gdc.author.wosid Rezapour, Shahram/N-4883-2016
gdc.author.yokid 56389
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Agarwal, Ravi P.] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA; [Agarwal, Ravi P.] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania; [Rezapour, Shahram; Salehi, Saeid] Azarbaijan Shahid Madani Univ, Dept Math, Azarshahr, Tabriz, Iran en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 2014
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2125502053
gdc.identifier.wos WOS:000349785500004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 4.345465E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Algebra and Number Theory
gdc.oaire.keywords Fractional Differential Equations
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Public Health, Environmental and Occupational Health
gdc.oaire.keywords Theory and Applications of Fractional Differential Equations
gdc.oaire.keywords Computer science
gdc.oaire.keywords Algorithm
gdc.oaire.keywords Boundary Value Problems
gdc.oaire.keywords Modeling and Simulation
gdc.oaire.keywords Disease Transmission and Population Dynamics
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Health Sciences
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Medicine
gdc.oaire.keywords Functional Differential Equations
gdc.oaire.keywords Analysis
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Anomalous Diffusion Modeling and Analysis
gdc.oaire.keywords Fractional ordinary differential equations
gdc.oaire.keywords fixed point
gdc.oaire.keywords fractional finite difference equation
gdc.oaire.popularity 9.2731245E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 4.07784776
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 26
gdc.plumx.crossrefcites 20
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 42
gdc.publishedmonth 10
gdc.scopus.citedcount 42
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 38
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files