Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Local fractional similarity solution for the diffusion equation defined on Cantor sets

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science LTD

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this letter, the local fractional similarity solution is addressed for the non-differentiable diffusion equation. Structuring the similarity transformations via the rule of the local fractional partial derivative operators, we transform the diffusive operator into a similarity ordinary differential equation. The obtained result shows the non-differentiability of the solution suitable to describe the properties and behaviors of the fractal content.

Description

Keywords

Similarity Solution, Diffusion Equation, Non-differentiability, Local Fractional Derivative, Local Fractional Partial Derivative Operators

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Yang, X.J., Baleanu,D., Srivastava, H.M. (2015). Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 47, 54-60. http://dx.doi.org/10.1016/j.aml.2015.02.024

WoS Q

Scopus Q

Source

Applied Mathematics Letters

Volume

47

Issue

Start Page

54

End Page

60