Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Local fractional similarity solution for the diffusion equation defined on Cantor sets

dc.authorid Yang, Xiao-Jun/0000-0003-0009-4599
dc.authorid Srivastava, Hari M./0000-0002-9277-8092
dc.authorscopusid 37006104500
dc.authorscopusid 7005872966
dc.authorscopusid 23152241800
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Yang, Xiao-Jun/E-8311-2011
dc.authorwosid Srivastava, Hari M./N-9532-2013
dc.contributor.author Yang, Xiao-Jun
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Srivastava, H. M.
dc.contributor.other Matematik
dc.date.accessioned 2017-04-18T10:57:40Z
dc.date.available 2017-04-18T10:57:40Z
dc.date.issued 2015
dc.department Çankaya University en_US
dc.department-temp [Yang, Xiao-Jun] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-077125 Bucharest, Romania; [Srivastava, H. M.] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada en_US
dc.description Yang, Xiao-Jun/0000-0003-0009-4599; Srivastava, Hari M./0000-0002-9277-8092 en_US
dc.description.abstract In this letter, the local fractional similarity solution is addressed for the non-differentiable diffusion equation. Structuring the similarity transformations via the rule of the local fractional partial derivative operators, we transform the diffusive operator into a similarity ordinary differential equation. The obtained result shows the non-differentiability of the solution suitable to describe the properties and behaviors of the fractal content. (C) 2015 Published by Elsevier Ltd. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Yang, X.J., Baleanu,D., Srivastava, H.M. (2015). Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 47, 54-60. http://dx.doi.org/10.1016/j.aml.2015.02.024 en_US
dc.identifier.doi 10.1016/j.aml.2015.02.024
dc.identifier.endpage 60 en_US
dc.identifier.issn 0893-9659
dc.identifier.issn 1873-5452
dc.identifier.scopus 2-s2.0-84939986878
dc.identifier.scopusquality Q1
dc.identifier.startpage 54 en_US
dc.identifier.uri https://doi.org/10.1016/j.aml.2015.02.024
dc.identifier.volume 47 en_US
dc.identifier.wos WOS:000355374700009
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 143
dc.subject Similarity Solution en_US
dc.subject Diffusion Equation en_US
dc.subject Non-Differentiability en_US
dc.subject Local Fractional Derivative en_US
dc.subject Local Fractional Partial Derivative Operators en_US
dc.title Local fractional similarity solution for the diffusion equation defined on Cantor sets tr_TR
dc.title Local Fractional Similarity Solution for the Diffusion Equation Defined on Cantor Sets en_US
dc.type Article en_US
dc.wos.citedbyCount 146
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: