Local fractional similarity solution for the diffusion equation defined on Cantor sets
dc.authorid | Yang, Xiao-Jun/0000-0003-0009-4599 | |
dc.authorid | Srivastava, Hari M./0000-0002-9277-8092 | |
dc.authorscopusid | 37006104500 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 23152241800 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Yang, Xiao-Jun/E-8311-2011 | |
dc.authorwosid | Srivastava, Hari M./N-9532-2013 | |
dc.contributor.author | Yang, Xiao-Jun | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Srivastava, H. M. | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2017-04-18T10:57:40Z | |
dc.date.available | 2017-04-18T10:57:40Z | |
dc.date.issued | 2015 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Yang, Xiao-Jun] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, RO-077125 Bucharest, Romania; [Srivastava, H. M.] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada | en_US |
dc.description | Yang, Xiao-Jun/0000-0003-0009-4599; Srivastava, Hari M./0000-0002-9277-8092 | en_US |
dc.description.abstract | In this letter, the local fractional similarity solution is addressed for the non-differentiable diffusion equation. Structuring the similarity transformations via the rule of the local fractional partial derivative operators, we transform the diffusive operator into a similarity ordinary differential equation. The obtained result shows the non-differentiability of the solution suitable to describe the properties and behaviors of the fractal content. (C) 2015 Published by Elsevier Ltd. | en_US |
dc.description.publishedMonth | 9 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Yang, X.J., Baleanu,D., Srivastava, H.M. (2015). Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathematics Letters, 47, 54-60. http://dx.doi.org/10.1016/j.aml.2015.02.024 | en_US |
dc.identifier.doi | 10.1016/j.aml.2015.02.024 | |
dc.identifier.endpage | 60 | en_US |
dc.identifier.issn | 0893-9659 | |
dc.identifier.issn | 1873-5452 | |
dc.identifier.scopus | 2-s2.0-84939986878 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 54 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aml.2015.02.024 | |
dc.identifier.volume | 47 | en_US |
dc.identifier.wos | WOS:000355374700009 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 143 | |
dc.subject | Similarity Solution | en_US |
dc.subject | Diffusion Equation | en_US |
dc.subject | Non-Differentiability | en_US |
dc.subject | Local Fractional Derivative | en_US |
dc.subject | Local Fractional Partial Derivative Operators | en_US |
dc.title | Local fractional similarity solution for the diffusion equation defined on Cantor sets | tr_TR |
dc.title | Local Fractional Similarity Solution for the Diffusion Equation Defined on Cantor Sets | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 146 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: