Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Heisenberg's Equations of Motion With Fractional Derivatives

dc.contributor.author Tarawneh, Derar M.
dc.contributor.author Muslih, Sami I.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Rabei, Eqab M.
dc.date.accessioned 2016-04-08T08:24:49Z
dc.date.accessioned 2025-09-18T12:09:21Z
dc.date.available 2016-04-08T08:24:49Z
dc.date.available 2025-09-18T12:09:21Z
dc.date.issued 2007
dc.description.abstract Fractional variational principles is a new topic in the field of fractional calculus and it has been subject to intense debate during the last few years. One of the important applications of fractional variational principles is fractional quantization. In this present study, fractional calculus is applied to obtain the Hamiltonian formalism of non-conservative systems. The definition of Poisson bracket is used to obtain the equations of motion in terms of these brackets. The commutation relations and the Heisenberg equations of motion are also obtained. The proposed approach was tested on two examples and good agreements with the classical fractional are reported. en_US
dc.identifier.citation Rabei, E.M...et al. (2007). Heisenberg's equations of motion with fractional derivatives. Journal of Vibration and Control, 13(9-10), 1239-1247. http://dx.doi.org/10.1177/1077546307077469 en_US
dc.identifier.doi 10.1177/1077546307077469
dc.identifier.issn 1077-5463
dc.identifier.issn 1741-2986
dc.identifier.scopus 2-s2.0-34748816791
dc.identifier.uri https://doi.org/10.1177/1077546307077469
dc.identifier.uri https://hdl.handle.net/20.500.12416/11364
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.ispartof International Symposium on Mathematical Methods in Engineering (MME06) -- APR 27-29, 2006 -- Cankaya Univ, Ankara, TURKEY en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractional Calculus en_US
dc.subject Fractional Hamiltonian en_US
dc.subject Non-Conservative Systems en_US
dc.subject Fractional Poisson Brackets en_US
dc.subject Heisenberg Equations en_US
dc.subject Quantization en_US
dc.title Heisenberg's Equations of Motion With Fractional Derivatives en_US
dc.title Heisenberg's equations of motion with fractional derivatives tr_TR
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.scopusid 6602156175
gdc.author.scopusid 22036846100
gdc.author.scopusid 7003657106
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Muslih, Sami/Aaf-4974-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Jerash Private Univ, Jerash, Jordan; Mutah Univ, Al Karak, Jordan; Al Azhar Univ, Gaza, Israel; Inst Space Sci, Magurele, Romania; Cankaya Univ, Ankara, Turkey en_US
gdc.description.endpage 1247 en_US
gdc.description.issue 9-10 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 1239 en_US
gdc.description.volume 13 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science - Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2018683885
gdc.identifier.wos WOS:000250173100004
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 4.2851647E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Fractional derivatives and integrals
gdc.oaire.keywords non-conservative systems
gdc.oaire.keywords Fractional calculus
gdc.oaire.keywords Heisenberg equations
gdc.oaire.keywords Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
gdc.oaire.keywords fractional Poisson brackets
gdc.oaire.keywords quantization
gdc.oaire.keywords fractional Hamiltonian
gdc.oaire.popularity 4.976598E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.79058328
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 20
gdc.plumx.crossrefcites 18
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 19
gdc.publishedmonth 10
gdc.scopus.citedcount 20
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 20
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files