Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New (P, Q)-Estimates for Different Types of Integral Inequalities Via (Α, M)-Convex Mappings

dc.contributor.author Latif, Muhammad Amer
dc.contributor.author Rashid, Saima
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Chu, Yu-Ming
dc.contributor.author Kalsoom, Humaira
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2023-11-23T08:04:41Z
dc.date.accessioned 2025-09-18T15:43:43Z
dc.date.available 2023-11-23T08:04:41Z
dc.date.available 2025-09-18T15:43:43Z
dc.date.issued 2020
dc.description Latif, Muhammad Amer/0000-0003-2349-3445 en_US
dc.description.abstract In the article, we present a new (p, q)-integral identity for the first-order (p, q)-differentiable functions and establish several new (p, q)-quantum error estimations for various integral inequalities via (a alpha, m)-convexity. We also compare our results with the previously known results and provide two examples to show the superiority of our obtained results. en_US
dc.description.publishedMonth 12
dc.description.sponsorship Natural Science Foundation of China [11701176, 61673169, 11301127, 11626101, 11601485] en_US
dc.description.sponsorship The authors express their gratitude to the referees for very helpful and detailed comments and suggestions, which have significantly improved the presentation of this paper. The research was supported by the Natural Science Foundation of China under grant numbers 11701176, 61673169, 11301127, 11626101 and 11601485. en_US
dc.identifier.citation Kalsoom, Humaira..et al. (2021). "New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings", OPEN MATHEMATICS, Vol. 18, pp. 1830-1854. en_US
dc.identifier.doi 10.1515/math-2020-0114
dc.identifier.issn 2391-5455
dc.identifier.scopus 2-s2.0-85099971806
dc.identifier.uri https://doi.org/10.1515/math-2020-0114
dc.identifier.uri https://hdl.handle.net/20.500.12416/14022
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Z O O en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject (P,Q)-Quantum Calculus en_US
dc.subject Hermite-Hadamard Inequality en_US
dc.subject Simpson'S Type Inequality en_US
dc.subject (Alpha,M)-Convex Functions en_US
dc.title New (P, Q)-Estimates for Different Types of Integral Inequalities Via (Α, M)-Convex Mappings en_US
dc.title New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Latif, Muhammad Amer/0000-0003-2349-3445
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 56724169900
gdc.author.scopusid 36502453600
gdc.author.scopusid 57200041124
gdc.author.scopusid 7005872966
gdc.author.scopusid 9839077200
gdc.author.wosid Rashid, Saima/Aaf-7976-2021
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Latif, Muhammad Amer/Abp-5976-2022
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China; [Chu, Yu-Ming] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410014, Peoples R China; [Kalsoom, Humaira] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China; [Latif, Muhammad Amer] King Faisal Univ, Dept Basic Sci, Deanship Preparatory Year, Hofuf Al Hasa 31982, Saudi Arabia; [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey en_US
gdc.description.endpage 1854 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1830 en_US
gdc.description.volume 18 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3122873500
gdc.identifier.wos WOS:000610868200001
gdc.openalex.fwci 2.2084948
gdc.openalex.normalizedpercentile 0.9
gdc.opencitations.count 8
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
gdc.wos.citedcount 7
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files