New (P, Q)-Estimates for Different Types of Integral Inequalities Via (Α, M)-Convex Mappings
| dc.contributor.author | Latif, Muhammad Amer | |
| dc.contributor.author | Rashid, Saima | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Chu, Yu-Ming | |
| dc.contributor.author | Kalsoom, Humaira | |
| dc.date.accessioned | 2023-11-23T08:04:41Z | |
| dc.date.accessioned | 2025-09-18T15:43:43Z | |
| dc.date.available | 2023-11-23T08:04:41Z | |
| dc.date.available | 2025-09-18T15:43:43Z | |
| dc.date.issued | 2020 | |
| dc.description | Latif, Muhammad Amer/0000-0003-2349-3445 | en_US |
| dc.description.abstract | In the article, we present a new (p, q)-integral identity for the first-order (p, q)-differentiable functions and establish several new (p, q)-quantum error estimations for various integral inequalities via (a alpha, m)-convexity. We also compare our results with the previously known results and provide two examples to show the superiority of our obtained results. | en_US |
| dc.description.sponsorship | Natural Science Foundation of China [11701176, 61673169, 11301127, 11626101, 11601485] | en_US |
| dc.description.sponsorship | The authors express their gratitude to the referees for very helpful and detailed comments and suggestions, which have significantly improved the presentation of this paper. The research was supported by the Natural Science Foundation of China under grant numbers 11701176, 61673169, 11301127, 11626101 and 11601485. | en_US |
| dc.identifier.citation | Kalsoom, Humaira..et al. (2021). "New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings", OPEN MATHEMATICS, Vol. 18, pp. 1830-1854. | en_US |
| dc.identifier.doi | 10.1515/math-2020-0114 | |
| dc.identifier.issn | 2391-5455 | |
| dc.identifier.scopus | 2-s2.0-85099971806 | |
| dc.identifier.uri | https://doi.org/10.1515/math-2020-0114 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/14022 | |
| dc.language.iso | en | en_US |
| dc.publisher | de Gruyter Poland Sp Z O O | en_US |
| dc.relation.ispartof | Open Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | (P,Q)-Quantum Calculus | en_US |
| dc.subject | Hermite-Hadamard Inequality | en_US |
| dc.subject | Simpson'S Type Inequality | en_US |
| dc.subject | (Alpha,M)-Convex Functions | en_US |
| dc.title | New (P, Q)-Estimates for Different Types of Integral Inequalities Via (Α, M)-Convex Mappings | en_US |
| dc.title | New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Latif, Muhammad Amer/0000-0003-2349-3445 | |
| gdc.author.scopusid | 56724169900 | |
| gdc.author.scopusid | 36502453600 | |
| gdc.author.scopusid | 57200041124 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 9839077200 | |
| gdc.author.wosid | Rashid, Saima/Aaf-7976-2021 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Latif, Muhammad Amer/Abp-5976-2022 | |
| gdc.author.yokid | 56389 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China; [Chu, Yu-Ming] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410014, Peoples R China; [Kalsoom, Humaira] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China; [Latif, Muhammad Amer] King Faisal Univ, Dept Basic Sci, Deanship Preparatory Year, Hofuf Al Hasa 31982, Saudi Arabia; [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey | en_US |
| gdc.description.endpage | 1854 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1830 | en_US |
| gdc.description.volume | 18 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W3122873500 | |
| gdc.identifier.wos | WOS:000610868200001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 8.0 | |
| gdc.oaire.influence | 3.010922E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Financial economics | |
| gdc.oaire.keywords | Economics | |
| gdc.oaire.keywords | Geometry | |
| gdc.oaire.keywords | Matrix Inequalities and Geometric Means | |
| gdc.oaire.keywords | Orthogonal Polynomials | |
| gdc.oaire.keywords | Convexity | |
| gdc.oaire.keywords | 26d15 | |
| gdc.oaire.keywords | Coefficient Estimates | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | 26a51 | |
| gdc.oaire.keywords | Approximation | |
| gdc.oaire.keywords | (α,m)-convex functions | |
| gdc.oaire.keywords | 26d10 | |
| gdc.oaire.keywords | simpson’s type inequality | |
| gdc.oaire.keywords | hermite-hadamard inequality | |
| gdc.oaire.keywords | Conformal Mapping | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | Geometric Function Theory and Complex Analysis | |
| gdc.oaire.keywords | Matrix Inequalities | |
| gdc.oaire.keywords | Quasiconformal Mappings | |
| gdc.oaire.keywords | (p,q)-quantum calculus | |
| gdc.oaire.keywords | Regular polygon | |
| gdc.oaire.keywords | Combinatorics | |
| gdc.oaire.keywords | Physical Sciences | |
| gdc.oaire.keywords | Geometry and Topology | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.keywords | Convexity of real functions in one variable, generalizations | |
| gdc.oaire.keywords | \((\alpha, m)\)-convex functions | |
| gdc.oaire.keywords | Inequalities involving derivatives and differential and integral operators | |
| gdc.oaire.keywords | Inequalities for sums, series and integrals | |
| gdc.oaire.popularity | 7.887585E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.2084948 | |
| gdc.openalex.normalizedpercentile | 0.89 | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 8 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 7 | |
| gdc.publishedmonth | 12 | |
| gdc.scopus.citedcount | 7 | |
| gdc.virtual.author | Baleanu, Dumitru | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
