Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

New (P, Q)-Estimates for Different Types of Integral Inequalities Via (Α, M)-Convex Mappings

dc.contributor.author Latif, Muhammad Amer
dc.contributor.author Rashid, Saima
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Chu, Yu-Ming
dc.contributor.author Kalsoom, Humaira
dc.date.accessioned 2023-11-23T08:04:41Z
dc.date.accessioned 2025-09-18T15:43:43Z
dc.date.available 2023-11-23T08:04:41Z
dc.date.available 2025-09-18T15:43:43Z
dc.date.issued 2020
dc.description Latif, Muhammad Amer/0000-0003-2349-3445 en_US
dc.description.abstract In the article, we present a new (p, q)-integral identity for the first-order (p, q)-differentiable functions and establish several new (p, q)-quantum error estimations for various integral inequalities via (a alpha, m)-convexity. We also compare our results with the previously known results and provide two examples to show the superiority of our obtained results. en_US
dc.description.sponsorship Natural Science Foundation of China [11701176, 61673169, 11301127, 11626101, 11601485] en_US
dc.description.sponsorship The authors express their gratitude to the referees for very helpful and detailed comments and suggestions, which have significantly improved the presentation of this paper. The research was supported by the Natural Science Foundation of China under grant numbers 11701176, 61673169, 11301127, 11626101 and 11601485. en_US
dc.identifier.citation Kalsoom, Humaira..et al. (2021). "New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings", OPEN MATHEMATICS, Vol. 18, pp. 1830-1854. en_US
dc.identifier.doi 10.1515/math-2020-0114
dc.identifier.issn 2391-5455
dc.identifier.scopus 2-s2.0-85099971806
dc.identifier.uri https://doi.org/10.1515/math-2020-0114
dc.identifier.uri https://hdl.handle.net/20.500.12416/14022
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Z O O en_US
dc.relation.ispartof Open Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject (P,Q)-Quantum Calculus en_US
dc.subject Hermite-Hadamard Inequality en_US
dc.subject Simpson'S Type Inequality en_US
dc.subject (Alpha,M)-Convex Functions en_US
dc.title New (P, Q)-Estimates for Different Types of Integral Inequalities Via (Α, M)-Convex Mappings en_US
dc.title New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Latif, Muhammad Amer/0000-0003-2349-3445
gdc.author.scopusid 56724169900
gdc.author.scopusid 36502453600
gdc.author.scopusid 57200041124
gdc.author.scopusid 7005872966
gdc.author.scopusid 9839077200
gdc.author.wosid Rashid, Saima/Aaf-7976-2021
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Latif, Muhammad Amer/Abp-5976-2022
gdc.author.yokid 56389
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Chu, Yu-Ming] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China; [Chu, Yu-Ming] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410014, Peoples R China; [Kalsoom, Humaira] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China; [Latif, Muhammad Amer] King Faisal Univ, Dept Basic Sci, Deanship Preparatory Year, Hofuf Al Hasa 31982, Saudi Arabia; [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad 38000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey en_US
gdc.description.endpage 1854 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1830 en_US
gdc.description.volume 18 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3122873500
gdc.identifier.wos WOS:000610868200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 3.010922E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Financial economics
gdc.oaire.keywords Economics
gdc.oaire.keywords Geometry
gdc.oaire.keywords Matrix Inequalities and Geometric Means
gdc.oaire.keywords Orthogonal Polynomials
gdc.oaire.keywords Convexity
gdc.oaire.keywords 26d15
gdc.oaire.keywords Coefficient Estimates
gdc.oaire.keywords QA1-939
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords 26a51
gdc.oaire.keywords Approximation
gdc.oaire.keywords (α,m)-convex functions
gdc.oaire.keywords 26d10
gdc.oaire.keywords simpson’s type inequality
gdc.oaire.keywords hermite-hadamard inequality
gdc.oaire.keywords Conformal Mapping
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords Geometric Function Theory and Complex Analysis
gdc.oaire.keywords Matrix Inequalities
gdc.oaire.keywords Quasiconformal Mappings
gdc.oaire.keywords (p,q)-quantum calculus
gdc.oaire.keywords Regular polygon
gdc.oaire.keywords Combinatorics
gdc.oaire.keywords Physical Sciences
gdc.oaire.keywords Geometry and Topology
gdc.oaire.keywords Mathematics
gdc.oaire.keywords Convexity of real functions in one variable, generalizations
gdc.oaire.keywords \((\alpha, m)\)-convex functions
gdc.oaire.keywords Inequalities involving derivatives and differential and integral operators
gdc.oaire.keywords Inequalities for sums, series and integrals
gdc.oaire.popularity 7.887585E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration International
gdc.openalex.fwci 2.2084948
gdc.openalex.normalizedpercentile 0.89
gdc.opencitations.count 8
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 7
gdc.publishedmonth 12
gdc.scopus.citedcount 7
gdc.virtual.author Baleanu, Dumitru
gdc.wos.citedcount 7
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files