On the Non-Commutative Neutrix Product of the Distributions X<sup>-r</Sup>+ Ln<sup>p</Sup> X+ and X<sup>μ</Sup>+ln<sup>q< X+
| dc.contributor.author | Tas, Kenan | |
| dc.contributor.author | Fisher, Brian | |
| dc.contributor.authorID | 4971 | tr_TR |
| dc.date.accessioned | 2022-11-25T12:57:04Z | |
| dc.date.accessioned | 2025-09-18T13:25:58Z | |
| dc.date.available | 2022-11-25T12:57:04Z | |
| dc.date.available | 2025-09-18T13:25:58Z | |
| dc.date.issued | 2006 | |
| dc.description | Tas, Kenan/0000-0001-8173-453X | en_US |
| dc.description.abstract | Let f and g be distributions and g(n) = (g*delta(n))(x), where delta(n)(x ) is a certain sequence converging to the Dirac delta-function. The non-commutative neutrix product f o g of f and g is defined to be the neutrix limit of the sequence {fg(n) }, provided its limit h exists in the sense that [GRAPHICS] for all functions phi in D. It is proved that (x(+)(-r) ln(p) x(+)) o (x(+)(mu) ln(q) x(+)) = x(+)(-r+mu) ln(p+q) x(+) (x(-)(-r) ln(p) (x)-) o (x(-)(mu) ln(q) x(-)) = x(-)(-r+mu) ln(p+q) x(-) for mu < r - 1;mu not equal 0, +/- 1, +/- 2,..., r = 1,2,..., and p, q = 0, 1, 2,.... | en_US |
| dc.description.publishedMonth | 7 | |
| dc.identifier.citation | Fisher, Brian; Taş, Kenan (2006). "On the non-commutative neutrix product of the distributions x(+)(-r) ln(p) x(+) and x(+)(mu)ln(q) x(+)", INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, Vol. 17, No. 7, pp. 513-519. | en_US |
| dc.identifier.doi | 10.1080/10652460600725283 | |
| dc.identifier.issn | 1065-2469 | |
| dc.identifier.issn | 1476-8291 | |
| dc.identifier.scopus | 2-s2.0-33745632078 | |
| dc.identifier.uri | https://doi.org/10.1080/10652460600725283 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12462 | |
| dc.language.iso | en | en_US |
| dc.publisher | Taylor & Francis Ltd | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Distribution | en_US |
| dc.subject | Delta-Function | en_US |
| dc.subject | Product Of Distributions | en_US |
| dc.title | On the Non-Commutative Neutrix Product of the Distributions X<sup>-r</Sup>+ Ln<sup>p</Sup> X+ and X<sup>μ</Sup>+ln<sup>q< X+ | en_US |
| dc.title | On the non-commutative neutrix product of the distributions x(+)(-r) ln(p) x(+) and x(+)(mu)ln(q) x(+) | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Tas, Kenan/0000-0001-8173-453X | |
| gdc.author.institutional | Taş, Kenan | |
| gdc.author.scopusid | 7402131987 | |
| gdc.author.scopusid | 9279157700 | |
| gdc.author.wosid | Tas, Kenan/D-8441-2011 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England; Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey | en_US |
| gdc.description.endpage | 519 | en_US |
| gdc.description.issue | 7 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 513 | en_US |
| gdc.description.volume | 17 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2080595851 | |
| gdc.identifier.wos | WOS:000238564800005 | |
| gdc.openalex.fwci | 0.46328827 | |
| gdc.openalex.normalizedpercentile | 0.6 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | 9cc98397-8c8f-4713-aa8a-09add1eac3bb | |
| relation.isAuthorOfPublication.latestForDiscovery | 9cc98397-8c8f-4713-aa8a-09add1eac3bb | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |